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Mutually Iso-recursive Subtyping (Expanded)

ANDREAS ROSSBERG,Munich, Germany

Iso-recursive types are often taken as a type-theoretic model for type recursion as present in many program-

ming languages, e.g., classes in object-oriented languages or algebraic datatypes in functional languages.

Their main advantage over an equi-recursive semantics is that they are simpler and algorithmically less

expensive, which is an important consideration when the cost of type checking matters, such as for interme-

diate or low-level code representations, virtual machines, or runtime casts. However, a closer look reveals

that iso-recursion cannot, in its standard form, efficiently express essential type system features like mutual

recursion or non-uniform recursion. While it has been folklore that mutual recursion and non-uniform type

parameterisation can nicely be handled by generalising to higher kinds, this encoding breaks down when

combined with subtyping: the classic “Amber” rule for subtyping iso-recursive types is too weak to express

mutual recursion without falling back to encodings of quadratic size.

We present a foundational core calculus of iso-recursive types with declared subtyping that can express

both inter- and intra-recursion subtyping without such blowup, including subtyping between constructors of

higher or mixed kind. In a second step, we identify a syntactic fragment of this general calculus that allows

for more efficient type checking without “deep” substitutions, by observing that higher-kinded iso-recursive

types can be inserted to “guard” against unwanted 𝛽-reductions. This fragment closely resembles the structure

of typical nominal subtype systems, but without requiring nominal semantics. It has been used as the basis for

a proposed extension of WebAssembly with recursive types.
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1 INTRODUCTION
Recursive types are a central element of typed programming languages. Object-oriented program-

ming would be impossible without recursion between classes or their instances’ object types.

Similarly, typed functional programming heavily depends on the ability to form recursive algebraic

data types. Even classical procedural languages usually have the means to define recursive record

types. In all cases, multiple types can also be mutually recursive with each other.

Two different semantic interpretations of type recursion have been studied [Pierce 2002; Crary

et al. 1999]: equi-recursive types, which are implicitly equivalent to their unrollings, and iso-recursive

types, where folding and unfolding are explicit injection/projection operators on the term level.

Although equi-recursive types are generally more flexible and expressive, their coinductive

nature results in a considerably more complicated meta-theory as well as higher algorithmic

complexity. Types correspond to regular trees, i.e., cyclic graphs in this model, and relations like

type equivalence or subtyping are as complex to verify as equivalence or inclusion between finite

state automata [Kozen et al. 1993].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART234

https://doi.org/10.1145/3622809

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 234. Publication date: October 2023.

HTTPS://ORCID.ORG/
https://doi.org/10.1145/3622809
https://doi.org/10.1145/3622809


234:2 Andreas Rossberg

Iso-recursive types on the other hand stay nicely inductive, with a simple interpretation as trees.

That way, common meta operations are efficiently implementable with bottom-up algorithms:

• type equivalence check,

• subtyping check,

• type canonicalisation (i.e., unifying the representation of equivalent types).

Interestingly, despite their simpler nature, Abadi & Fiore [1996] have shown that every typing

derivation in an equi-recursive setting can still be embedded into an iso-recursive type system, for

the price of inserting suitable conversion terms.

These properties make iso-recursive types the far more attractive choice for type systems that

require efficient decision procedures. Our particular motivation lies in type-safe low-languages like

WebAssembly (Wasm) [Haas et al. 2017]. For Wasm, type checking has to be performed online, each

time a new module is validated, instantiated, and linked, so that Wasm engines crucially dependent

on all of the above operations. Consequently, an extension of Wasm with recursive types, as needed

for proposed extensions like garbage collection [Rossberg 2022] or continuations [Phipps-Costin

et al. 2023; Lindley et al. 2022], want these algorithms to be as cheap as possible.

However, it turns out that iso-recursive types, as usually defined, still have shortcomings:

• Expressiveness. As we will see, the standard bare-bones semantics for iso-recursive types is

neither sufficient to maintain linear size in the presence of mutual type recursion, nor can

it fully express recursion between generic types. And while it is folklore knowledge how

to extend iso-recursion to 𝑛-ary and higher-kinded fixpoints, these encodings break down

once subtyping is thrown into the mix. In other words, standard iso-recursive types cannot

adequately express central features in contemporary programming languages.

• Performance. For common operations like equivalence and subtyping that are performed

many, many times during type checking, even time linear in the size of the types is much

too expensive. Equivalence can be brought down to constant time with the help of type

canonicalisation. Subtyping can only be improved by caching checks already made [Gapeyev

et al. 2002]. However, managing such caches complicates engines. For their purposes, an

eager approach is more desirable, where the subtyping relation is known before-hand.

In this paper, we set out to answer two questions:

(1) What is missing from the standard theory of iso-recursive types to express mutual subtyping

faithfully, and what is the minimal extension to bridge the gap?

(2) What is a suitable fragment of such a general calculus that minimises the algorithmic cost of

checking subtyping while still covering a broad range of use cases?

Our contributions hence are as follows:

• We recap the folklore encoding of mutual as well as non-uniform recursive types in an

extension of higher-kinded iso-recursive types and analyse its limitations. (Section 2)

• We demonstrate that these encodings are insufficient in the presence of subtyping and show

how the subtyping mechanism for iso-recursive types can be modified to allow faithful

encoding of subtyping between individual members of multiple recursion groups. (Section 3)

• We develop a foundational calculus of higher-order iso-recursive types with pre-declared

subtyping bounds that can express these encodings. We prove relevant properties like type

soundness and cut elimination, yielding a sound and complete subtype algorithm. (Section 4)

• We identify a practical fragment of the general calculus in which reduction and substitution

remain shallow, and hence cheap enough for real-world implementations in a language

runtime. We prove that this fragment is still sufficient to encode the subtyping relation of a

suitable variant of Java with generics and briefly report on its use in Wasm. (Section 5)

We conclude with discussion and related work (Sections 6 & 7).
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2 ISO-RECURSIVE TYPES
Under its textbook semantics, an iso-recursive type is formed as 𝜇𝛼.𝜏 , binding 𝛼 as a type variable

under which the type can refer to itself recursively within its actual definition 𝜏 . For example,

consider the following record type, defining nodes for a singly-linked list of integers:

struct List {
head : Int

tail : List

}
Such a type could be represented as follows:

list = 𝜇𝛼.{head : int, tail : 𝛼}
Values of iso-recursive type must be introduced and eliminated using term-level operators roll

and unroll (often called fold and unfold), whose respective typing rules add and remove one level

of recursion from their operand’s type, respectively:

𝜏 = 𝜇𝛼.𝜏 ′ Γ ⊢ 𝑒 : 𝜏 ′ [𝜏/𝛼]
Γ ⊢ roll𝜏 𝑒 : 𝜏

(T-Roll) 𝜏 = 𝜇𝛼.𝜏 ′ Γ ⊢ 𝑒 : 𝜏
Γ ⊢ unroll 𝑒 : 𝜏 ′ [𝜏/𝛼] (T-Unroll)

The type annotation on the roll-operator is necessary to ensure that its type is uniquely determined.

With that, a value of type list — say, the list [1, 2] — is representable with the following term:

𝑙 = rolllist {head = 1, tail = rolllist {head = 2, tail = null}}
(For the sake of simple examples, we dare to assume that record types are inhabited by null.)

Accordingly, to inspect the list — e.g., access its first element — its type has to be unrolled first:

ℎ = (unroll 𝑙).head
In this paper we never need the ability to reorder the fields of record types — our records are

effectively just tuples. In the remainder of the paper we will hence omit record labels to avoid

clutter, and express the prior definitions more tersely:

list = 𝜇𝛼.{int, 𝛼}
𝑙 = rolllist {1, rolllist {2, null}}
ℎ = (unroll 𝑙).1

2.1 Mutual recursion
Let us now consider two mutually recursive types: a node type for 𝑛-ary trees, whose children are

represented as a forest, which in turn is a list of trees:

struct Tree {
value : Int

children : Forest

}

struct Forest {
child : Tree

rest : Forest

}
Since this recursion spans two types, it can only be expressed by nesting the 𝜇-operator:

tree = 𝜇𝛼.{int, 𝜇𝛽.{𝛼, 𝛽}}
forest = 𝜇𝛽.{tree, 𝛽}

Each type needs to have a closed definition, so we are forced to inline a local view of forest into

tree’s definition (of course, we could also do it the other way round). Note in particular that this

“inlined” version needs to be syntactically different from forest itself, because it has to use the

internal type variable 𝛼 to refer to tree recursively. So both type expressions cannot be deduped.
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Still, that may not look so bad with just two types, but to see where it leads, consider a schematic

case of a recursion group of three types, with additional fields 𝑢, 𝑣 ,𝑤 to make them different:

struct 𝐴 {𝑢 : 𝑈 ; 𝑎 : 𝐴; 𝑏 : 𝐵; 𝑐 : 𝐶}
struct 𝐵 {𝑣 : 𝑉 ; 𝑎 : 𝐴; 𝑏 : 𝐵; 𝑐 : 𝐶}
struct 𝐶 {𝑤 :𝑊 ; 𝑎 : 𝐴; 𝑏 : 𝐵; 𝑐 : 𝐶}

Here is how these types would have to be expressed with vanilla iso-recursive types:

𝐴 = 𝜇𝑎.{𝑈 , 𝑎, (𝜇𝑏.{𝑉 , 𝑎, 𝑏, (𝜇𝑐.{𝑊,𝑎,𝑏, 𝑐})}), (𝜇𝑐.{𝑊,𝑎, (𝜇𝑏.{𝑉 , 𝑎, 𝑏, 𝑐}), 𝑐)}}
𝐵 = 𝜇𝑏.{𝑉 ,𝐴,𝑏, (𝜇𝑐.{𝑊,𝐴,𝑏, 𝑐})}
𝐶 = 𝜇𝑐.{𝑊,𝐴, 𝐵, 𝑐}

Inlining once is not enough, we have to do it — including transitive inlinings — 5 times! And all

inlinings of the same type are syntactically different, such that no sharing of its occurrences is

possible. It is not difficult to see that the total size of the type definitions grows quadratically with

the number of types in a mutual recursion group — or even worse when each type has more than

one occurrence of the other type names.

With higher-order types at hand, we could try to factor out the commonalities by functorising

each type definition:

𝐴𝐹 (𝐵𝐺,𝐶𝐺) = 𝜇𝑎.{𝑈 , 𝑎, 𝐵𝐺 (𝑎),𝐶𝐺 (𝑎)}
𝐵𝐹 (𝐴𝐺,𝐶𝐺) = 𝜇𝑏.{𝑉 ,𝐴𝐺 (𝑏), 𝑏,𝐶𝐺 (𝑏)}
𝐶𝐹 (𝐴𝐺, 𝐵𝐺) = 𝜇𝑐.{𝑊,𝐴𝐺 (𝑐), 𝐵𝐺 (𝑐), 𝑐}

Here,𝐴𝐹 , 𝐵𝐹 ,𝐶𝐹 are definitions of𝐴, 𝐵,𝐶 , parameterised by the respective other types within their

recursion group. The parameters themselves in turn need to be parameterised by the recursive type

they are woven into, in order to vary the occurrences, making this a higher-order abstraction.

That looks fancy, but unfortunately, still leads to quadratic growth when tying the knots:

𝐴 = 𝐴𝐹 (𝜆𝑎.𝐵𝐹 (𝜆𝑏.𝑎, 𝜆𝑏.𝐶𝐹 (𝜆𝑐.𝑎, 𝜆𝑐.𝑏)), 𝜆𝑎.𝐶𝐹 (𝜆𝑐.𝑎, 𝜆𝑐.𝐵𝐹 (𝜆𝑏.𝑎, 𝜆𝑏.𝑐)))
𝐵 = 𝐵𝐹 (𝜆𝑏.𝐴, 𝜆𝑏.𝐶𝐹 (𝜆𝑐.𝐴, 𝜆𝑐.𝑏))
𝐶 = 𝐶𝐹 (𝜆𝑐.𝐴, 𝜆𝑐.𝐵)

And of course, the normal forms of these types will also be no different from our first attempt.

Overall, we can conclude that vanilla iso-recursive types scale poorly. On paper, they maintain

linear type checking, but their encoding of a program with mutually recursive types is in fact poly-

nomial in size.
1
That makes them rather unsuitable for use in certain systems, such as intermediate

languages or low-level languages like Wasm.

2.2 Non-uniform recursion
Another limitation of vanilla iso-recursive types is that they can only express regular types —

sometimes called uniform recursion — where each recursive use of a constructor must preserve the

head shape, i.e., the original parameters. For example, a generic version of our prior list node type

is fine, because List is only applied to the original 𝑋 recursively:

struct List⟨𝑋 ⟩ {
head : 𝑋

tail : List⟨𝑋 ⟩
}

1
Note that this is worse than for equi-recursive types. While their textual representation grows in the same manner, the

respective terms merely express a cyclic graph that is linear in size when minimised. That is not possible in the iso-recursive

setting, because the inlined occurrences are actually different types, only equivalent after explicit unrolling.
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A regular recursive type like this can be expressed as a type constructor wrapped around an

ordinary iso-recursive type (we write Ω for the ground kind):

list = 𝜆𝑥 :Ω.𝜇𝛼 .{𝑥, 𝛼}
Notably, the recursive application has been replaced by a plain 𝛼 , and the lambda has effectively

been lifted out of the recursion.

But what if that is not possible? Many programming languages actually allow non-uniform

recursion and irregular types. For example, consider the following Haskell data type that defines

square matrices [Okasaki 1999]:

type Quad 𝑎 = (𝑎, 𝑎, 𝑎, 𝑎)
data Square 𝑎 = Zero 𝑎 | Succ (Square (Quad 𝑎))

Note how the recursive application of Square is to Quad 𝑎, not just 𝑎 like on the left-hand side.

Lifting the abstraction out of the recursion becomes impossible.

Various patterns of object-oriented programming also use irregular types. For example, a con-

tainer library for Java might want to provide an interface method like the following:

interface List⟨𝑋 ⟩ {
List⟨List⟨𝑋 ⟩⟩ groupBy(Func⟨𝑋,𝑋, Bool⟩ eq);

}

2.3 Higher-kinded iso-recursion
The folklore solution to both problems described so far is to generalise iso-recursion to both 𝑛-ary

fixpoints and higher kinds [Pierce 2002]. In fact, higher kinds are sufficient to express𝑛-ary fixpoints

as well, since they allow the introduction of tuple kinds. For example, a variation of this solution

has been adopted in the type-theoretic interpretation of Standard ML [Harper and Stone 2000].

To see how this works, consider a type system with the following kinds:

𝜅 ::= Ω | 𝜅 × 𝜅 | 𝜅 → 𝜅

At the type level, we have corresponding introduction and elimination forms for these higher kinds,

namely type pairs and type functions:

𝜏 ::= . . . | ⟨𝜏, 𝜏⟩ | 𝜏 .𝑖 | 𝜆𝛼 :𝜅.𝜏 | 𝜏 𝜏
With this, we can allow iso-recursive types to be introduced at any kind 𝜅 , such that they take the

form 𝜇𝛼 :𝜅.𝜏 . But power comes with responsibility, so we must also do more work in the typing

rules for roll/unroll:
𝜏 = 𝜇𝛼 :𝜅.𝜏 ′ Γ ⊢ 𝑒 : 𝑇 [𝜏 ′] [𝜏/𝛼]

Γ ⊢ roll𝑇 [𝜏 ] 𝑒 : 𝑇 [𝜏]
(T-Roll-HO) 𝜏 = 𝜇𝛼 :𝜅.𝜏 ′ Γ ⊢ 𝑒 : 𝑇 [𝜏]

Γ ⊢ unroll 𝑒 : 𝑇 [𝜏 ′] [𝜏/𝛼] (T-Unroll-HO)

To formulate these rules in a compact and uniform fashion, we define type elimination contexts 𝑇 :

𝑇 ::= [_] | 𝑇 .𝑖 | 𝑇 𝜏

The first brackets in𝑇 [𝜏 ′] [𝜏/𝛼] fill the hole in that context, while the second express a substitution.

Let’s digest this with an example, a type constructor 𝜏 = 𝜇𝛼 :(Ω→Ω).𝜆𝛽 :Ω.{𝛽, 𝛼 (𝛽)}. Then the

term

roll𝜏 (nat ){1, roll𝜏 (nat ){2, roll𝜏 (nat ){3, roll𝜏 (nat ) null}}} : 𝜏 (nat)
creates what can be interpreted as the list [1, 2, 3] of natural numbers: at each roll, 𝑇 is [_] (nat)
and the operand is of type 𝑇 [𝜆𝛽 :Ω.{𝛽, 𝛼 (𝛽)}] [𝜏/𝛼] ≡ (𝜆𝛽 :Ω.{𝛽, 𝜏 (𝛽)})(nat) ≡ {nat, 𝜏 (nat)}.
Since terms can only have types of ground kind Ω, the context 𝑇 occurring in the typing rules

necessarily has to eliminate all higher kinds from 𝜅 in order for roll/unroll terms to be well-typed.
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Okay, but how does this solve our previous problems?

Tuple kinds can express a single fixpoint over a tuple of multiple mutually recursive types. For

example, the forest from Section 2.1 can be encoded almost directly and without any duplication:

tree_forest = 𝜇𝛼 : Ω × Ω. ⟨{int, 𝛼 .2}, {𝛼.1, 𝛼 .2}⟩
tree = tree_forest .1

forest = tree_forest .2

At this stage we should point out that we are dealing with a calculus here, and the equations

above are simply meta-level definitions. Technically, they mean that tree is in fact the type (𝜇𝛼 :

Ω × Ω.⟨{int, 𝛼 .2}, {𝛼.1, 𝛼 .2}⟩) .1. And similarly, forest contains the entirety of the same 𝜇-type. So,

are we not buying into some textual “code duplication” with this as well?

Well, only virtually. Of course, a real programming language will offer language-level means to

name types, avoiding textual duplication. And a real implementation can share the representation

for occurrences of the same type. Hence, we liberally use meta-level definitions as if they were

language-level definitions, and assume that multiple uses of the same type incur no extra cost (and

come back to explicitly named type definitions in Section 5.2).

The fact that all occurrences of the tree_forest type are syntactically the same is what sets this

representation apart from the quadratic encoding shown in Section 2.1, because that had to duplicate

type terms with slight modifications for each of the occurrences, such that they cannot be named

or shared in a single definition!

Let us return to the problem at hand, and turn to arrow kinds. Given those, it is possible to keep

the lambda encoding of a type parameter inside the recursion and apply it heterogeneously, unlike

before. Recall the square matrix example from Section 2.2, which can now be expressed as:

quad = 𝜆𝑎 : Ω. 𝑎 × 𝑎 × 𝑎 × 𝑎

square = 𝜇𝛽 : Ω → Ω. 𝜆𝑎 : Ω. 𝑎 + 𝛽 (quad 𝑎)

Of course, both tuple and arrow kinds can also be combined freely, forming non-uniform mutually

recursive generic types. We will see an example later.

It is important to note that despite the fancy extra kinds, we are still dealing with iso-recursive

types, meaning that there is no implicit unfolding on the type level. Consequently, a type like tree,

that is, (𝜇𝛼 : Ω×Ω. ⟨{int, 𝛼 .2}, {𝛼.1, 𝛼 .2}⟩).1, or an application like (𝜇𝛼 : Ω → Ω.𝜆𝛽 : Ω.{𝛽, 𝛼}) int,
are already in normal form and cannot be reduced further! A redex is only produced in a controlled

manner by the unrollings applied in the typing rules for roll and unroll. That ensures that even this

higher-order extension still is algorithmically well-behaved and normalisation terminates.

As mentioned, this technique has been successfully applied to model real-world languages like

Standard ML. And at this point it may seem like we have a satisfying and scalable solution to the

problem of modelling programming language with iso-recursive types.

But do we? Well, wait until subtyping complicates everything, like it usually does.

3 SUBTYPING
Imagine the tree and forest node definitions from Section 2.1 were actually defined in an object-

oriented language, as classes:

class Tree {
value : Int

children : Forest

}

class Forest {
child : Tree

rest : Forest

}
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The types of instances of these classes, when expressed with higher-order iso-recursive types,

remain exactly the same as given in Section 2.3 (ignoring method tables):

tree_forest = 𝜇𝛼 : Ω × Ω. ⟨{int, 𝛼 .2}, {𝛼.1, 𝛼 .2}⟩
tree = tree_forest .1

forest = tree_forest .2

But according to object-oriented philosophy, it ought to be possible to define a subclass of Tree that

adds an additional field:

class ExtTree extends Tree {
info : Int

}
The natural encoding of the instance type of this class would be:

exttree = 𝜇𝛼 : Ω. {int, forest, int}
But in order to be an adequate encoding, we also need this to be a subtype of the type tree!

So let us recall how subtyping works. The standard rule for subtyping iso-recursive types is

sometimes dubbed the “Amber” rule, due its initial appearance in Cardelli’s experimental language

Amber [Cardelli 1986]. This rule, generalised to higher-kinded 𝜇, looks as follows:

Γ, 𝛼2:𝜅, 𝛼1≤𝛼2 ⊢ 𝜏1 ≤ 𝜏2

Γ ⊢ 𝜇𝛼1:𝜅.𝜏1 ≤ 𝜇𝛼2:𝜅.𝜏2
(S-Rec-Amber)

Turning to type tuples, the most liberal rule that we could define would support both width and

depth subtyping:

Γ ⊢ 𝜏11 ≤ 𝜏21 · · · Γ ⊢ 𝜏1𝑁 ≤ 𝜏2𝑁

Γ ⊢ ⟨𝜏11, . . . , 𝜏1𝑁 , . . . , 𝜏1𝑀 ⟩ ≤ ⟨𝜏21, . . . , 𝜏2𝑁 ⟩
But combining these rules, there is no way in which exttree ≤ tree_forest .1 could possibly be

derived. These types do not even have the same shape, despite already being in normal form! With

just these rules and the previous encoding of mutually recursive types, only types from larger

recursion groups can be subtypes of smaller (or equally sized) recursion groups, and only if there

was a 1-to-1 subtype correspondence between the members of the groups.

Clearly, that’s not sufficient. In a programming language, any member of a recursive group of

types can be in a subtype relation with any member of another (or its own!) recursion group.

3.1 Coinductive generalisations of iso-recursive subtyping
One attempt at a fix could be to build unrolling into the subtyping rule:

Γ ⊢ 𝜏1 [𝜇𝛼1:𝜅.𝜏1/𝛼1] ≤ 𝜏2 [𝜇𝛼2:𝜅.𝜏2/𝛼2]
Γ ⊢ 𝜇𝛼1:𝜅.𝜏1 ≤ 𝜇𝛼2:𝜅.𝜏2

(S-Rec-Unroll)

A version of such a rule has previously been proposed by Ligatti et al. [2017], for example.

However, one problem with this rule is that it is no longer inductive. A subtyping assertion

like 𝜇𝛼.{𝛼, int} ≤ 𝜇𝛼.{𝛼} would be reduced to the goal {𝜇𝛼.{𝛼, int}, int} ≤ {𝜇𝛼.{𝛼}}, and then to

𝜇𝛼.{𝛼, int} ≤ 𝜇𝛼.{𝛼} again. To make this work, we need to assume recursively that the original

relation holds, but then we are essentially in a coinductive setting.
2
At that point, we could just

as well go back to equi-recursive types, since rule S-Rec-Unroll suffers from many of the same

problems. In particular, every type is a subtype of its unrolling, e.g., 𝜇𝛼.{𝛼} ≤ 𝜇𝛼.{𝜇𝛼.{𝛼}} (and vice
versa), which can be repeated indefinitely by transitivity. Consequently, the algorithmic complexity

2
Technically, a coinductive relation can be formulated with inductive rules by introducing an environment of assumptions to

the subtyping judgement, like done by Ligatti et al. and originally in Amadio & Cardelli [1993]. The close relation between

such a formulation and coinduction was first pointed out by Brandt and Henglein [1998]. Unfortunately, this trick does not

eliminate the meta-theoretical and algorithmic repercussions.
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of checking subtyping is no better than for equi-recursive types (concretely, it is𝑂 (𝑚 · 𝑛) vs𝑂 (𝑛2),
but with𝑚, the number of recursive binders, which itself is linear in 𝑛 in the worst case).

The other issue is that this rule does not even solve our original problem. It could still not handle

exttree ≤ tree_forest .1, because the right-hand side of that assertion is not a 𝜇-type syntactically,

nor can it be reduced to one. We would need a higher-order extension, analogous to the typing

rules T-Roll-HO and T-Unroll-HO, which might look as follows:

Γ ⊢ 𝑇1 [𝜏1] [𝜇𝛼1:𝜅1 .𝜏1/𝛼1] ≤ 𝑇2 [𝜏2] [𝜇𝛼2:𝜅2.𝜏2/𝛼2]
Γ ⊢ 𝑇1 [𝜇𝛼1:𝜅1.𝜏1] ≤ 𝑇2 [𝜇𝛼2:𝜅2.𝜏2]

(S-Rec-Unroll-HO)

This indeed would allow deriving exttree ≤ tree_forest .1, because both sides would be unfolded to

records {int, tree_forest .2, . . . } in the premise. But the meta-theory of such a complex rule is rather

non-obvious, not least due to its asymmetric elimination contexts.

A cleaner approach might be to separate the unrolling. For example, by adding a type equivalence

rule that is a version of “Shao’s equation” [Crary et al. 1999]:

𝜇𝛼.𝜏 ≡ 𝜇𝛼.𝜏 [𝜇𝛼.𝜏/𝛼] (E-Rec-Shao)

In its bare form, this rule is not quite enough, we would again need a higher-order generalisation

that mirrors the unrolling happening in the typing rules T-Roll and T-Unroll:

𝑇 [𝜇𝛼 :𝜅.𝜏] ≡ 𝜇𝛼 :Ω.𝑇 [𝜏] [𝜇𝛼 :𝜅.𝜏/𝛼] (E-Rec-Shao-HO)

Combined with S-Rec-Amber and transitivity, this rule appears to subsume S-Rec-Unroll-HO.

And it would allow deriving exttree ≤ tree_forest .1, because tree_forest .1 ≡ 𝜇𝛼 :Ω.{int, tree_forest .2}
under this rule. However, such a rule obviously has the same problem as S-Rec-Unroll, namely

that it puts us into coinductive territory, which is not where we want to be. Note in particular that

Shao’s equation is almost the same as the unrolling rule for equi-recursive types, except that the

𝜇-binder is not eliminated on the outside. So, roll/unroll operators are still enforced on the term

level, but we have not won anything for the type level — leaving us with the worst of both worlds.

3.2 Declared Subtyping
The previous attempts at solving the problem had in common that they tried to meddle with the

“use site” of subtyping: by making the subtype relation more powerful, they would essentially allow

to infer the desired subtype assertions where they are needed. Unfortunately, that has the inherent

problem that more expressive subtyping will almost inevitably be more costly to check, and the

respective computation has to be performed each time subsumption is invoked Or alternatively,

extra overhead has to be invested into caching it.

In this paper, we hence explore the opposite direction and focus on the “definition site” of

subtyping: that is, we require that all recursive subtype assertions used in a program are declared

upfront with a recursive type’s definition. That allows them to be verified once at definition time

(ideally, in linear time), and after that, subsumption can be checked in approximately constant time.

While seemingly odd from the perspective of type theory, this of course is the dominant approach

in practical programming languages. Although this design choice is typically related to nominal

typing, where declaring supertype bounds upfront is inevitable, there is no principle reason why

the approach cannot be applied in a structurally typed system, like an iso-recursive theory. It is

particularly attractive for “internal” low-level languages like Wasm, for which the convenience

of “inferred” subtyping is not relevant — it is fine to offload the work of collecting the necessary

assertions to the source language compiler and have it insert the necessary declarations.
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To this end, we propose a minimal modification of subtyping for iso-recursive types, where the

𝜇-operator is extended with an upper bound
3
:

𝜇𝛼≤𝜏1.𝜏2
As usual in type systems with higher-order subtyping [Pierce and Steffen 1997; Compagnoni

1995], the bound 𝜏1 replaces the kind annotation, as it is now implied by 𝜏1. The bound declares

the immediate supertype of the formed types — no other supertypes will be recognised than its

immediate or indirect, declared supertypes. Consequently, the subtyping rule for 𝜇-types can now

be vastly simplified. Assuming that there are separate rules for reflexivity and transitivity, it’s just:

Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 ≤ 𝜏1
S-Rec-Sup

But of course, in order for this rule to be sound, the validity of the declared subtype now needs to

be verified as part of well-formedness of 𝜇-types, hence the following kinding rule:

Γ ⊢ 𝜏1 : 𝜅 Γ, 𝛼 ≤ 𝜏1 ⊢ 𝜏2 : 𝜅 Γ, 𝛼 ≤ 𝜏1 ⊢ 𝜏2 ≤ unroll𝜅 (𝜏1)
Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 : 𝜅

K-Rec-Sup

This rule requires that 𝜏2 is a suitable subtype of the unrolling of 𝜏1. The unroll meta-function is a

kind-indexed generalisation of the unrolling substitution over a type elimination context that we

saw earlier:

unrollΩ (𝜏) = 𝑇 [𝜏2] [𝜇𝛼≤𝜏1.𝜏2/𝛼] if 𝜏 ≡ 𝑇 [𝜇𝛼≤𝜏1.𝜏2]
unrollΩ (𝜏) = ⊤ if 𝜏 ≡ ⊤
unroll𝜅1×𝜅2 (𝜏) = ⟨unroll𝜅1 (𝜏 .1), unroll𝜅2 (𝜏 .2)⟩
unroll𝜅1→𝜅2 (𝜏) = 𝜆𝛼 :𝜅1 .unroll𝜅2 (𝜏 𝛼)

At ground kind, unrolling is only defined for 𝜇-types and for the top type. For higher kinds the

unrolling is pushed inwards by means of 𝜂-expansion.4 Consequently, the bound on a 𝜇-type either

has to be top or a 𝜇-type itself, or a higher-order type producing those.

One technical complication with these two rules is that kinding and subtyping relations now are

mutually dependent. That could cause severe pain for the meta-theory, but it turns out that it is

harmless in this instance, because the subtyping premise on K-Rec-Sup can be “ignored” for the

purpose of type normalisation, thereby allowing to stratify the meta-theoretical development; see

Appendix A.4 and A.5 for details.

The typing rules for the roll and unroll operators remain unchanged as given in Section 2.3.

We can now use the desired definition for encoding the mutually recursive instance types of the

Tree and Forest classes, except that we have to give them bounds. Since there are no supertypes,

we use the top type for both:

tree_forest = 𝜇𝛼 ≤ ⟨⊤,⊤⟩. ⟨{int, 𝛼 .2}, {𝛼.1, 𝛼 .2}⟩
tree = tree_forest .1

forest = tree_forest .2

The instance type of the subclass ExtTree gets a more interesting supertype:

exttree = 𝜇𝛼 ≤ tree. {int, forest, int}

It is easy to check that tree_forest is well-formed according to Rule K-Rec-Sup, since in the premise,

unrollΩ×Ω (⟨⊤,⊤⟩) ≡ ⟨⊤,⊤⟩, so we only need to check each record against ⊤.
3
We defer the discussion of multiple supertypes to Section 7.

4
In a type system with 𝜂-convertibility already built into the type equivalence relation, the 𝜂-expansion and thus the

indexing by kinds wouldn’t be necessary, and unroll(𝑇 [𝜇𝛼≤𝜏1 .𝜏2 ] ) = 𝑇 [𝜏2 ] [𝜇𝛼≤𝜏1 .𝜏2/𝛼 ] would suffice for all kinds.
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For exttree, unrolling yields unrollΩ (tree) ≡ {int, tree_forest .2}, which is the instance type of tree

and a straightforward width supertype of exttree’s representation.

Note that the type term for exttree will virtually contain its entire superclass hierarchy in the

bound, which may seem to induce serious “code duplication”. But as pointed out in Section 2.3,

this is merely an artefact of dealing with a substitution-based calculus. In a proper programming

language, the usual naming mechanisms prevent it from manifesting physically.

3.3 Intra-Recursion Subtyping
But we are still not quite done. There is one more annoying complication: we must also allow

subtyping between the types of a single recursion group! For example, the analogue of the following

code is perfectly legal in most object-oriented languages:

class A { 𝑥 : 𝐵 } class B extends 𝐴 { 𝑦 : 𝐴 }

If we were to try translating that into iso-recursive types with our recipe above, we would end up

with something like the following:

AB = 𝜇𝛼 ≤ ⟨⊤, 𝛼 .1⟩.⟨{𝛼.2}, {𝛼.2, 𝛼 .1}⟩

But obviously, this is not well-formed, because 𝛼 is not in scope in its own bound.

Unfortunately, this example is not expressible with the rules given so far, even with a more

sophisticated encoding. To see why, observe that we ultimately need the following relation to hold:

AB.2 ≤ AB.1

But the only direct supertypes of a 𝜇-type like AB are either ⊤ or another 𝜇-type. In the latter

case, this other type (or a type equivalent to it) has to occur as the bound, i.e., as a subterm,

in order for rule S-Rec-Sup to apply. The argument can be iterated transitively for any indirect

supertypes. Consequently, for the above to hold, the whole 𝜇-type AB would have to contain itself

as a proper subterm, which is syntactically impossible, no matter how clever we are trying to be

about decomposing and layering the recursion (e.g., with nested 𝜇-types).

What now?

One solution would be to generalise 𝜇-types to an F-bounded semantics, where 𝛼 is allowed to

occur freely within its own bound [Canning et al. 1989; Baldan et al. 1999]. Such an extension is

interesting in its own right, because many object-oriented languages indeed support F-bounded

inheritance. However, F-bounded quantification complicates the meta-theory significantly. It hence

seems wiser to investigate such a generalisation separately in future work, while also demonstrating

that it is not required to address the more earthly problem of intra-recursion subtyping.

In this light, we restrain ourselves to a more moderate extension. Namely, we make 𝜇-types with

tuple bounds primitive:

𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏
Here, the later tuple component in the bound is allowed to refer to earlier one, but not vice versa:

Γ ⊢ 𝜏1 : 𝜅1 Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏 : 𝜅1 × 𝜅2

Γ, 𝛼1≤𝜏1 ⊢ 𝜏2 : 𝜅2 Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏 ≤ unroll
[𝜏 .1/𝛼1 ]
𝜅1×𝜅2 (⟨𝜏1, 𝜏2⟩)

Γ ⊢ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 : 𝜅1 × 𝜅2
K-Rec-Tup

Since the bound 𝜏2 may refer to 𝛼1, which would involve checking that the second component is

a subtype of the first, its representation has to be substituted during the subtype check. For that

purpose, the definition of unrolling is extended with a variable case and a substitution parameter
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applied in that case. The base case of unrolling is also modified accordingly:

unroll
𝜎
Ω (𝑇 [𝜏]) = 𝑇 [𝜏 ′] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2] if 𝜏 ≡ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′

unroll
𝜎
Ω (𝑇 [𝜏]) = 𝑇 [𝜎 (𝛼)] if 𝜏 ≡ 𝛼

For example, consider:

𝜏 = 𝜇⟨𝛼1≤⊤, 𝛼2≤𝛼1⟩.⟨{𝛼2}, {𝛼2, 𝛼1}⟩
Because 𝛼2 is declared to be a subtype of 𝛼1, our definition should better verify {𝛼2, 𝛼1} ≤ {𝛼2}
somehow. This internal subtyping is accounted, because the unroll function expands 𝛼1 in root

position and thus the last premise of rule K-Rec-Tup checks:
5

⟨{𝛼2}, {𝛼2, 𝛼1}⟩ ≤ unroll
𝜎
Ω×Ω (⟨⊤, 𝛼1⟩) where 𝜎 = [⟨{𝛼2}, {𝛼2, 𝛼1}⟩.1/𝛼1]

≡ ⟨⊤, unroll𝜎Ω (𝛼1)⟩
= ⟨⊤, ⟨{𝛼2}, {𝛼2, 𝛼1}⟩.1⟩
≡ ⟨⊤, {𝛼2}⟩

The other crucial change to support dependent bounds occurs in the subtyping rule:

𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′
Γ ⊢ 𝜏 ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩

S-Rec-Tup

By substituting the first projection of the whole type for 𝛼1, the dependency is preserved as needed.

With this, we can define:

AB = 𝜇⟨𝛼1 ≤ ⊤, 𝛼2 ≤ 𝛼1⟩.⟨{𝛼2}, {𝛼2, 𝛼1}⟩
We leave it as an exercise to the reader to convince themselves that this type is well-formed according

to rule K-Rec-Tup, and more interestingly, that the AB.2 ≤ AB.1 holds with rule S-Rec-Tup.

There is but one wrinkle: while tuples of higher arity can generally be encoded in terms of nested

binary tuples given subtyping and a top type (including both depth and width subtyping), such

a decomposition is not possible for the 𝜇-operator — pretty much for the same reason that the

binary operator itself is not encodable. To support intra-subtyping within larger recursion groups,

a generalised version of the operator for tuples of arbitrary arity hence has to be made primitive.

But since the generalisation is obvious, we only spell out the binary version here to avoid clutter.

Bounds can only refer to earlier variables, and as a consequence, all subtyping in a recursion

group has to be ordered linearly with respect to their declared supertype relation. That implicitly

prevents cyclic subtyping. This restriction is present in most programming languages as well.

Fortunately, if a subtype relation is indeed non-cyclic, a linear order can always be constructed by

topologically sorting the types by their supertype dependencies.

4 THE 𝜆misu CALCULUS
In the remainder of this paper we formalise the ideas sketched in the previous sections. We proceed

in two steps. First, in this section, we formalise them in an extension of System F
𝜔
≤ , the polymorphic

𝜆-calculus with higher-order subtyping [Pierce and Steffen 1997; Compagnoni 1995; Pierce 2002].

We call it the misu calculus, for “mutually iso-recursive subtyping”. This calculus realises the idea

of declared subtyping in its most general form, in a minimal extension to a standard formulation of

iso-recursive types. It therefore provides a type-theoretic justification for the more limited system

that we derive in a second step, in the next section. The advantage of doing it this way instead of

constructing the latter system directly is that it guarantees that the final system is coherent wrt. a

general and canonical semantics, and has a clear extension path to cover more ground if needs be.

5
Note that it would not be correct to simply substitute 𝛼1 in the result of the unrolling, as per unroll𝜅 (⟨𝜏1, 𝜏2 ⟩) [𝜏 .1/𝛼1 ].
Other occurrences of 𝛼1 must not be affected, such that, e.g., 𝜇⟨𝛼1≤⊤, 𝛼2≤𝜇_.{𝛼1 → 𝛼1}⟩.⟨{ }, {𝛼1 → 𝛼1}⟩ is well-formed.

For the same reason, it would work neither to blindly substitute the type beforehand, like with unroll𝜅 (⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1 ] ⟩) .
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4.1 Syntax and Semantics
To layer the presentation a little bit, we start out smoothly by presenting the basic 𝜆misu calculus,

which only features the simpler unary 𝜇-type from Section 3.2. In the following subsection, we

then show the more uncomely modifications to obtain the full calculus, which also supports

intra-recursion subtyping, as developed in Section 3.3.

Figure 1 shows the complete definition of the basic 𝜆misu calculus. It consists of mostly stan-

dard ingredients [Pierce 2002], with the novel parts being highlighted in red. As usual for F
𝜔
≤ ,

it features function and tuple types and a top type, as well as universal types with kernel sub-

typing rule [Cardelli and Wegner 1985]. In addition, it has both arrow and product kinds, with

respective introduction and elimination forms on the type level. We limit the presentation to

binary tuples on type and term level, although we take the liberty to assume other arities in

some of our examples — the encoding of 𝑛-ary tuples ⟨𝑒1, . . . , 𝑒𝑛⟩ : 𝜏1 × · · · × 𝜏𝑛 as nested pairs

⟨𝑒1, ⟨. . . , ⟨𝑒𝑛, ⟨⟩⟩⟩⟩ : 𝜏1 × (· · · × (𝜏𝑛 × ⊤)) is straightforward and provides both depth and width

subtyping [Cardelli 1994].

The only interesting addition over the standard textbook calculus are recursive types along the

lines developed in the previous Section, i.e., an iso-recursive 𝜇-constructor with an upper bound, and

respective roll and unroll operators for injection and projection into/out of such types. Judgement

forms and rules are largely standard as well. We formalise call-by-value reduction using evaluation

contexts. Typing, kinding, and subtyping operate relative to an environment Γ recording the type

of term variables and the bounds of type variables. To handle type-level 𝜆, whose parameter is

only given a kind, we define higher-order top types ⊤𝜅 as an abbreviation [Pierce 2002]. The only

novelty is in the kinding and subtyping rules for 𝜇, which resemble K-Rec-Sup and S-Rec-Sup

from Section 3.2, and the typing rules for roll and unroll, which are equivalent to T-Roll-HO and

T-Unroll-HO from Section 2.3, but reusing the unroll𝜅 meta-function for notational convenience.

4.2 The Full Calculus
With the basic calculus set up, Figure 2 shows the modifications for obtaining the full 𝜆misu

calculus. Again, we highlight the differences in red, but this time relative to the formulation in

Figure 1. The majority of rules is unmodified and hence omitted.

For the most part, the changes are fairly mechanical, adapting to the extended syntax of the

𝜇-constructor, and folding in the tuple semantics. Other than that, the only substantial changes are

the following, dealing with the possibility of the first type variable occurring in the second bound:

• In the kinding rule, the second bound is kinded with the first variable in scope.

• The unroll meta-function adds a case for the occurrence of this variable as a root, which just

gets replaced by the first projection of the 𝜇-type’s body, accomplished by a substitution

parameter 𝜎 (which we omit when it is empty).

• In the subtyping rule, any free occurrence of the first type variable in the second bound is

substituted by the first projection from the complete type.

As mentioned, we only show the extended 𝜇-operator for binary tuples. The generalisation to larger

arities can be found in Appendix C.2 .

In the full calculus, the unary version of 𝜇 is encodable in a straightforward manner:

𝜇𝛼≤𝜏1.𝜏2 = (𝜇⟨𝛼1≤𝜏1, 𝛼2≤⊤⟩.⟨𝜏2,⊤⟩).1

It is easy to show that the original kinding, subtyping, and reduction rules are admissible.
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Syntax
(kinds) 𝜅 ::= Ω | 𝜅 × 𝜅 | 𝜅 → 𝜅

(types) 𝜏 ::= 𝛼 | ⊤ | 𝜏 × 𝜏 | 𝜏 → 𝜏 | ∀𝛼≤𝜏 .𝜏 | 𝜇𝛼≤𝜏 .𝜏 | ⟨𝜏, 𝜏 ⟩ | 𝜏 .𝑖 | 𝜆𝛼 :𝜅.𝜏 | 𝜏 𝜏

(values) 𝑣 ::= ⟨𝑣, 𝑣⟩ | 𝜆𝑥 :𝜏 .𝑒 | 𝜆𝛼≤𝜏 .𝑒 | roll𝜏 𝑣

(terms) 𝑒 ::= 𝑥 | 𝑣 | ⟨𝑒, 𝑒 ⟩ | 𝑒.𝑖 | 𝑒 𝑒 | 𝑒 𝜏 | roll𝜏 𝑒 | unroll 𝑒
(type contexts) 𝑇 ::= _ | 𝑇 .𝑖 | 𝑇 𝜏

(eval contexts) 𝐸 ::= _ | 𝐸.𝑖 | 𝐸 𝑒 | 𝑣 𝐸 | 𝐸 𝜏 | roll 𝐸 | unroll 𝐸
(environments) Γ ::= · | Γ, 𝑥 :𝜏 | Γ, 𝛼≤𝜏

Top (⊤𝜅 )
⊤Ω = ⊤
⊤𝜅1×𝜅2 = ⟨⊤𝜅1 ,⊤𝜅2 ⟩
⊤𝜅1→𝜅2 = 𝜆𝛼 :𝜅1 .⊤𝜅2

Reduction (𝑒 ↩→ 𝑒′)
⟨𝑣1, 𝑣2 ⟩.𝑖 ↩→ 𝑣𝑖

(𝜆𝑥 :𝜏 .𝑒1 ) 𝑣2 ↩→ 𝑒1 [𝑣2/𝑥 ]
(𝜆𝛼≤𝜏1 .𝑒 ) 𝜏2 ↩→ 𝑒 [𝜏2/𝛼 ]

unroll (roll𝜏 𝑣) ↩→ 𝑣

𝑒 ↩→ 𝑒′

𝐸 [𝑒 ] ↩→ 𝐸 [𝑒′ ]

Unrolling (unroll𝜅 (𝜏 ))
unrollΩ (𝑇 [𝜏 ] ) = 𝑇 [𝜏2 ] [𝜏/𝛼 ] if 𝜏 ≡ 𝜇𝛼≤𝜏1 .𝜏2
unrollΩ (𝜏 ) = ⊤ if 𝜏 ≡ ⊤
unroll𝜅1×𝜅2 (𝜏 ) = ⟨unroll𝜅1 (𝜏 .1), unroll𝜅2 (𝜏 .2) ⟩
unroll𝜅1→𝜅2 (𝜏 ) = 𝜆𝛼 :𝜅1 . unroll𝜅2 (𝜏 𝛼 )

Context Formation (⊢ Γ ok)

⊢ · ok
⊢ Γ ok Γ ⊢ 𝜏 : Ω 𝑥 ∉ dom(Γ)

⊢ Γ, 𝑥 :𝜏 ok

⊢ Γ ok Γ ⊢ 𝜏 : 𝜅 𝛼 ∉ dom(Γ)
⊢ Γ, 𝛼≤𝜏 ok

Type Formation (Γ ⊢ 𝜏 : 𝜅)
Γ ⊢ Γ (𝛼 ) : 𝜅
Γ ⊢ 𝛼 : 𝜅

Γ ⊢ 𝜏1 : 𝜅 Γ, 𝛼≤𝜏1 ⊢ 𝜏2 : 𝜅 Γ, 𝛼≤𝜏1 ⊢ 𝜏2 ≤ unroll𝜅 (𝜏1 )
Γ ⊢ 𝜇𝛼≤𝜏1 .𝜏2 : 𝜅

⊢ Γ ok

Γ ⊢ ⊤ : Ω

Γ ⊢ 𝜏1 : Ω Γ ⊢ 𝜏2 : Ω
Γ ⊢ 𝜏1 × 𝜏2 : Ω

Γ ⊢ 𝜏1 : Ω Γ ⊢ 𝜏2 : Ω
Γ ⊢ 𝜏1 → 𝜏2 : Ω

Γ ⊢ 𝜏1 : 𝜅 Γ, 𝛼≤𝜏1 ⊢ 𝜏2 : Ω
Γ ⊢ ∀𝛼≤𝜏1 .𝜏2 : Ω

Γ ⊢ 𝜏1 : 𝜅1 Γ ⊢ 𝜏2 : 𝜅2
Γ ⊢ ⟨𝜏1, 𝜏2 ⟩ : 𝜅1 × 𝜅2

Γ ⊢ 𝜏 : 𝜅1 × 𝜅2

Γ ⊢ 𝜏 .𝑖 : 𝜅𝑖
Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏2 : 𝜅2

Γ ⊢ 𝜆𝛼 :𝜅1 .𝜏2 : 𝜅1 → 𝜅2

Γ ⊢ 𝜏1 : 𝜅2 → 𝜅 Γ ⊢ 𝜏2 : 𝜅2
Γ ⊢ 𝜏1 𝜏2 : 𝜅

Term Formation (Γ ⊢ 𝑒 : 𝜏)
⊢ Γ ok

Γ ⊢ 𝑥 : Γ (𝑥 )
Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ ⟨𝑒1, 𝑒2 ⟩ : 𝜏1 × 𝜏2

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ 𝑒.𝑖 : 𝜏𝑖

Γ, 𝑥 :𝜏1 ⊢ 𝑒 : 𝜏2

Γ ⊢ 𝜆𝑥 :𝜏1 .𝑒 : 𝜏1 → 𝜏2

Γ ⊢ 𝑒1 : 𝜏2 → 𝜏 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝑒1 𝑒2 : 𝜏

Γ, 𝛼≤𝜏1 ⊢ 𝑒 : 𝜏2

Γ ⊢ 𝜆𝛼≤𝜏1 .𝑒 : ∀𝛼≤𝜏1 .𝜏2
Γ ⊢ 𝑒 : ∀𝛼≤𝜏1 .𝜏2 Γ ⊢ 𝜏 ≤ 𝜏1 : 𝜅

Γ ⊢ 𝑒 𝜏 : 𝜏2 [𝜏/𝛼 ]

𝜏 = 𝜇𝛼≤𝜏1 .𝜏2 Γ ⊢ 𝑒 : unrollΩ (𝑇 [𝜏 ] ) Γ ⊢ 𝑇 [𝜏 ] : Ω
Γ ⊢ roll𝑇 [𝜏 ] 𝑒 : 𝑇 [𝜏 ]

𝜏 = 𝜇𝛼≤𝜏1 .𝜏2 Γ ⊢ 𝑒 : 𝑇 [𝜏 ]
Γ ⊢ unroll 𝑒 : unrollΩ (𝑇 [𝜏 ] )

Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝜏 ′ : Ω Γ ⊢ 𝜏 ≤ 𝜏 ′

Γ ⊢ 𝑒 : 𝜏 ′

Type Equivalence (𝜏 ≡ 𝜏 ′)
reflexive, transitive, symmetric, congruent closure of ⟨𝜏1, 𝜏2 ⟩.𝑖 ≡ 𝜏𝑖 (𝜆𝛼 :𝜅.𝜏1 ) 𝜏2 ≡ 𝜏1 [𝜏2/𝛼 ]

Subtyping (Γ ⊢ 𝜏 ≤ 𝜏 ′) (Γ ⊢ 𝜏1 ≤ 𝜏2 : 𝜅 ⇐⇒ Γ ⊢ 𝜏1 : 𝜅 ∧ Γ ⊢ 𝜏2 : 𝜅 ∧ Γ ⊢ 𝜏1 ≤ 𝜏2)
𝜏 ≡ 𝜏 ′

Γ ⊢ 𝜏 ≤ 𝜏 ′
Γ ⊢ 𝜏 ≤ 𝜏 ′ Γ ⊢ 𝜏 ′ : 𝜅 Γ ⊢ 𝜏 ′ ≤ 𝜏 ′′

Γ ⊢ 𝜏 ≤ 𝜏 ′′ Γ ⊢ 𝛼 ≤ Γ (𝛼 ) Γ ⊢ 𝜇𝛼≤𝜏1 .𝜏2 ≤ 𝜏1

Γ ⊢ 𝜏 : Ω

Γ ⊢ 𝜏 ≤ ⊤
Γ ⊢ 𝜏1 ≤ 𝜏 ′

1
Γ ⊢ 𝜏2 ≤ 𝜏 ′

2

Γ ⊢ 𝜏1 × 𝜏2 ≤ 𝜏 ′
1
× 𝜏 ′

2

Γ ⊢ 𝜏 ′
1
≤ 𝜏1 Γ ⊢ 𝜏2 ≤ 𝜏 ′

2

Γ ⊢ 𝜏1 → 𝜏2 ≤ 𝜏 ′
1
→ 𝜏 ′

2

Γ, 𝛼≤𝜏1 ⊢ 𝜏2 ≤ 𝜏 ′
2

Γ ⊢ ∀𝛼≤𝜏1 .𝜏2 ≤ ∀𝛼≤𝜏1 .𝜏 ′
2

Γ ⊢ 𝜏1 ≤ 𝜏 ′
1

Γ ⊢ 𝜏2 ≤ 𝜏 ′
2

Γ ⊢ ⟨𝜏1, 𝜏2 ⟩ ≤ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩

Γ ⊢ 𝜏 ≤ 𝜏 ′

Γ ⊢ 𝜏 .𝑖 ≤ 𝜏 ′ .𝑖
Γ, 𝛼≤⊤𝜅 ⊢ 𝜏 ≤ 𝜏 ′

Γ ⊢ 𝜆𝛼 :𝜅.𝜏 ≤ 𝜆𝛼 :𝜅.𝜏 ′
Γ ⊢ 𝜏1 ≤ 𝜏 ′

1

Γ ⊢ 𝜏1 𝜏2 ≤ 𝜏 ′
1
𝜏2

Fig. 1. The basic 𝜆misu calculus
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Syntax
𝜏 ::= . . . | 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2 ⟩.𝜏

Unrolling (unroll𝜅 (𝜏 ))
unroll

𝜎
Ω (𝑇 [𝜏 ] ) = 𝑇 [𝜏 ′ ] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2 ] if 𝜏 ≡ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2 ⟩.𝜏 ′

unroll
𝜎
Ω (𝑇 [𝜏 ] ) = 𝑇 [𝜎 (𝛼 ) ] if 𝜏 ≡ 𝛼

unroll
𝜎
Ω (𝜏 ) = ⊤ if 𝜏 ≡ ⊤

unroll
𝜎
𝜅1×𝜅2 (𝜏 ) = ⟨unroll𝜎𝜅1 (𝜏 .1), unroll

𝜎
𝜅2

(𝜏 .2) ⟩
unroll

𝜎
𝜅1→𝜅2

(𝜏 ) = 𝜆𝛼 :𝜅1 . unroll
𝜎
𝜅2

(𝜏 𝛼 )

Type Formation (Γ ⊢ 𝜏 : 𝜅)
Γ ⊢ 𝜏1 : 𝜅1 Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏 : 𝜅1 × 𝜅2

Γ, 𝛼≤𝜏1 ⊢ 𝜏2 : 𝜅2 Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏 ≤ unroll
[𝜏 .1/𝛼1 ]
𝜅1×𝜅2 (⟨𝜏1, 𝜏2 ⟩)

Γ ⊢ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2 ⟩.𝜏 : 𝜅1 × 𝜅2

Term Formation (Γ ⊢ 𝑒 : 𝜏)
𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2 ⟩.𝜏 ′ Γ ⊢ 𝑒 : unrollΩ (𝑇 [𝜏 ] ) Γ ⊢ 𝑇 [𝜏 ] : Ω

Γ ⊢ roll𝑇 [𝜏 ] 𝑒 : 𝑇 [𝜏 ]
𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2 ⟩.𝜏 ′ Γ ⊢ 𝑒 : 𝑇 [𝜏 ]

Γ ⊢ unroll 𝑒 : unrollΩ (𝑇 [𝜏 ] )

Subtyping (Γ ⊢ 𝜏 ≤ 𝜏 ′)
𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2 ⟩.𝜏 ′
Γ ⊢ 𝜏 ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1 ] ⟩

Fig. 2. Modifications for the full 𝜆misu calculus

4.3 Example
To convince ourselves that this calculus scales to more complex examples, consider the following set

of (admittedly artificial) classes, which mix all interesting features. To make it even more interesting,

we allow the types of (immutable) fields to be overridden covariantly:

class 𝐴 {
𝑥 : Int

𝑦 : 𝐵⟨Int⟩ → 𝐴

}

class 𝐵⟨𝑋 ⟩ <: 𝐴 {
𝑧 : 𝑋

𝑣 : 𝐴

}

class 𝐶 ⟨𝑋 ⟩ <: 𝐵⟨𝑋 ⟩ {
override 𝑣 : 𝐶 ⟨𝑋 ⟩
𝑤 : 𝐷

}

class 𝐷 <: 𝐶 ⟨Float⟩ {
override 𝑣 : 𝐷

override 𝑦 : 𝐴 → 𝐶 ⟨Int⟩
}

In this synthetic example, 𝐴 and 𝐵 form a recursion group, as do 𝐶 and 𝐷 , both groups using

intra-recursion subtyping, plus there is inter-recursion subtyping between 𝐶 and 𝐵. The latter is

kind-homogeneous, while subtyping is heterogeneous between 𝐵 and 𝐴 or 𝐷 and 𝐶 , introducing,

resp. specialising a type parameter. The override of 𝑦 in 𝐷 is contra/co-variant in the function type.

The canonical, subtype-preserving 𝜆misu-encoding of the instance type hierarchy produced by

these classes would be the following. We liberally assume the addition of higher-arity tuples and

width subtyping on term-level tuples, which we write with record notation {. . . } instead of ⟨. . . ⟩
for better readability:

ab = 𝜇⟨𝛼1 ≤ ⊤, 𝛼2 ≤ 𝜆𝜒 :Ω.𝛼1⟩.⟨
{int, 𝛼2 (int) → 𝛼1},
𝜆𝜒 :Ω.{int, (𝛼2 (int) → 𝛼1), 𝜒, 𝛼1}⟩

cd = 𝜇⟨𝛽1 ≤ ab.2, 𝛽2 ≤ 𝛽1 (float)⟩.⟨
𝜆𝜒 :Ω.{int, (ab.2(int) → ab.1), 𝜒, 𝛽1 (𝜒), 𝛽2},
{int, (ab.1 → 𝛽1 (int)), float, 𝛽2, 𝛽2} ⟩

With this, ab.1 and ab.2 represent instances of 𝐴 and 𝐵, while cd .1 and cd .2 define 𝐶 and 𝐷 ,

respectively. Inside ab, the variables 𝛼1 and 𝛼2 name 𝐴 and 𝐵 recursively, similarly 𝛽1 and 𝛽2 in cd.

In each case, the bound of the variable corresponds to the supertype declared for the original class,

or ⊤ where none is given. The records in the recursive types consist of all instance fields for the

respective class, including inherited ones. In the case of generic classes, their instance type has

a respective parameter 𝜒 , both in its declared bound and its definition. As a minor point, we can

𝜂-reduce the bound of 𝛽1 to just ab.2, but the expansion 𝜆𝜒 :Ω. ab.2(𝜒) would work as well.
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Proving that these types are well-formed in the calculus is primarily a matter of proving that the

unrolling of their bounds is a supertype of their bodies. For example, in the case of cd,

unroll
𝜎
(Ω→Ω)×Ω (⟨ab.2, 𝛽1 (float)⟩) = ⟨ab.2, {int, (ab.2(int) → ab.1), float, 𝛽1 (float), 𝛽2}⟩

(with 𝜎 = [𝜆𝜒 :Ω.{int, (ab.2(int) → ab.1), 𝜒, 𝛽1 (𝜒), 𝛽2}/𝛽1]), is a supertype of cd’s body, under the
assumption 𝛽1 ≤ ab.2, 𝛽2 ≤ 𝛽1 (float). We leave that as an exercise to the reader, as well as showing

that all the subtyping relations declared in the source program are preserved by this encoding.

A simple constructor function for instances of class 𝐶 ⟨𝑋 ⟩ could be encoded as follows:

new_c = 𝜆𝜒≤⊤. 𝜆𝑥 :int . 𝜆𝑦:(ab.2(int)→ab.1). 𝜆𝑧:𝜒. 𝜆𝑣 :cd .1(𝜒). 𝜆𝑤 :cd .2 . rollcd .1(𝜒 ) {𝑥,𝑦, 𝑧, 𝑣,𝑤}
This function is polymorphic over type 𝜒 and takes parameters 𝑥 , 𝑦, 𝑧, 𝑣 ,𝑤 corresponding to the

fields in the class, including the inherited ones, with their respective types. It then creates a record

of these fields and applies roll to form a value of the recursive type cd .1, also known as 𝐶 .

Now imagine a generic function that performs a simple computation on an object of type 𝐶 ⟨𝑋 ⟩:
func 𝑓 ⟨𝑋 ⟩(𝑐 : 𝐶 ⟨𝑋 ⟩) : Int {return 𝑐.𝑥 + 𝑐.𝑣 .𝑥 + 𝑐.𝑤 .𝑦 (𝑐.𝑤 .𝑣).𝑧}

This function is directly representable in our calculus (assuming the addition of a + operator):

𝑓 = 𝜆𝜒≤⊤. 𝜆𝑐 : cd .1(𝜒) . 𝑐 .1 + 𝑐.4.1 + 𝑐.5.2(𝑐.5.4).3
Field accesses directly map to projections of the respective record/tuple component. And because

subtyping is faithfully preserved in the encoding, no further magic is needed.

Finally, another function applying 𝑓 to values that are subtypes of the declared parameters,

func 𝑔(𝑑 : 𝐷) : Int {return 𝑓 ⟨Float⟩(𝑑.𝑣, 𝑑)}
can likewise be translated one-to-one, and since subtyping between 𝐷 and 𝐶 ⟨𝑋 ⟩ is preserved in

the encoding, the parameters can be used as is in the application to 𝑓 :

𝑔 = 𝜆𝑑 : cd .2 . 𝑓 (float) (𝑑.4) (𝑑)
So far, we have only considered instance fields of classes and conveniently skipped over methods.

That is because our subject of interest is subtyping, whereas full-blown class encodings are quite a

different challenge, for reasons that go beyond subtyping [Cook et al. 1989]. Bruce et al. [1999]

give a nice overview of basic encodings. The 𝜆misu-calculus as defined here can handle their basic

OR encoding, i.e., the classical objects-as-records-of-closures model, where methods are fields of

function type like 𝑦 in class 𝐴 above. But that encoding has limitations, in particular, it cannot

express inheritance with method overrides. Additional type-level constructs are required for that,

specifically the ability to encode self types to type the implicit receiver parameter of a (pre-)method.

This is a well-known problem, and various authors have investigated and addressed it. Abadi et

al. [1996] first gave a solution using bounded existential quantification, which Bruce et al. also

discuss, but which requires Full F≤ . We do not expect a problem with applying more complex

encodings like Bruce et al.’s to a suitably enriched version of our calculus, since they already use iso-

recursive types. A simpler, possibly more attractive alternative has been described by Glew [Glew

2000]. A comprehensive rehash of these complex techniques is outside the scope of our paper,

though, since it should neither affect nor is affected by the specific problem we set out to solve.

4.4 Subtyping Algorithm
Our subtyping rules are declarative, and the possible occurrence of type-level redexes allows for

non-trivial uses of transitivity. Hence, as usual with higher-order subtyping, it is not immediately

apparent how to formulate an algorithm [Pierce and Steffen 1997; Compagnoni 1995], and moreover,

whether the new rules for recursive types make that more difficult.
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Basic System
sub(Γ, 𝜏1, 𝜏2) = 𝜏1 ≡ 𝜏2 ∨ sub

′ (Γ, norm(𝜏1), norm(𝜏2))
sub

′ (Γ, _,⊤) = true
sub

′ (Γ, 𝜏11 × 𝜏12, 𝜏21 × 𝜏22) = sub(Γ, 𝜏11, 𝜏21) ∧ sub(Γ, 𝜏12, 𝜏22)
sub

′ (Γ, 𝜏11 → 𝜏12, 𝜏21 → 𝜏22) = sub(Γ, 𝜏21, 𝜏11) ∧ sub(Γ, 𝜏12, 𝜏22)
sub

′ (Γ,∀𝛼≤𝜏11.𝜏12,∀𝛼≤𝜏21.𝜏22) = 𝜏11 = 𝜏21 ∧ sub((Γ, 𝛼≤𝜏11), 𝜏12, 𝜏22)
sub

′ (Γ, ⟨𝜏11, 𝜏12⟩, ⟨𝜏21, 𝜏22⟩) = sub(Γ, 𝜏11, 𝜏21) ∧ sub(Γ, 𝜏12, 𝜏22)
sub

′ (Γ, 𝜆𝛼 :𝜅1.𝜏1, 𝜆𝛼 :𝜅2.𝜏2) = 𝜅1 = 𝜅2 ∧ sub((Γ, 𝛼≤⊤𝜅1 ), 𝜏1, 𝜏2)
sub

′ (Γ,𝑇 [𝛼], 𝜏2) = sub(Γ,𝑇 [Γ(𝛼)], 𝜏2)
sub

′ (Γ,𝑇 [𝜇𝛼≤𝜏11 .𝜏12], 𝜏2) = sub(Γ,𝑇 [𝜏11], 𝜏2)
sub

′ (Γ, _, _) = false

Full System (diff)

sub
′ (Γ,𝑇 [𝜏1], 𝜏2) = sub(Γ,𝑇 [⟨𝜏11, 𝜏12 [𝜏1.1/𝛼1]⟩], 𝜏2)

iff 𝜏1 = 𝜇⟨𝛼1≤𝜏11, 𝛼2≤𝜏12⟩.𝜏 ′1

Fig. 3. Subtyping Algorithm for 𝜆misu

Fortunately, it turns out that 𝜇-types are an easy addition to the known algorithms. This is

fairly intuitive after observing that subtyping on 𝜇-types is no different from what can already be

expressed with higher-kinded type variables. Concretely, with respect to subtyping and equivalence,

a type 𝜇𝛼≤𝜏1 .𝜏2 of kind 𝜅 behaves like the higher-order type application

𝜇𝜅 (𝜏1) (𝜆𝛼 :𝜅.𝜏2)
provided 𝜇𝜅 is an abstract type variable recorded in the context Γ with bound

𝜇𝜅 ≤ 𝜆𝑢:𝜅. 𝜆𝑓 :(𝜅 → 𝜅). 𝑢
In particular, the higher-order subtyping rules of F

𝜔
≤ are sufficient to derive

𝜇𝜅 (𝜏1) (𝜆𝛼 :𝜅.𝜏2) ≤ (Γ(𝜇𝜅)) (𝜏1) (𝜆𝛼 :𝜅.𝜏2) ≡ 𝜏1

as demanded by our rule for 𝜇-types.

Consequently, we can simply implement the case for 𝜇 by following the case for type variables.

That is, going from a recursive type to its bound is a case of promotion [Pierce and Steffen 1997].

With that in mind, Figure 3 shows an appropriate algorithm. Modulo minor case reordering, it

is essentially the one given by Pierce & Steffen [1997], except for the addition of type tuples and

𝜇-types. If the types are not equivalent already, the algorithm first reduces them to their normal

forms.
6
It then proceeds by case analysis. Most cases follow directly from the declarative rules.

Type tuples and type-level projections are a fairly straightforward addition. Tuples must simply

match pointwise. A projection that is not a redex can only be a subtype of another if both are either

equivalent (already covered), or if they are part of an elimination context around a variable or 𝜇-type

that can be promoted to create a redex that allows eliminating it. Consequently, where Steffen &

Pierce’s algorithm only applies promotion under a sequence of applications, the extended algorithm

generalises that to type elimination contexts 𝑇 , which may mix applications with projections.

In the case of a variable on the left, it is promoted to its upper bound as recorded in the context.

The variable may occur inside a type elimination context, in which case the promotion may enable

6
As noted by Pierce & Steffen [1997], weak-head normalisation would suffice here, and is more efficient in practice.
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further reduction. A variable on the right can only be matched by an equivalent type, so is already

covered by the initial equivalence check.

As observed above, 𝜇-types can be handled analogously, by promotion. But instead of looking

up the promoted type from the context, it is simply read off the type itself.

This algorithm (for both variants of the calculus) terminates and is sound and complete:

Theorem 4.1 (Algorithmic Soundness). If sub(Γ, 𝜏1, 𝜏2) = true, then Γ ⊢ 𝜏1 ≤ 𝜏2.

Theorem 4.2 (Algorithmic Completeness). If Γ ⊢ 𝜏1 ≤ 𝜏2, then sub(Γ, 𝜏1, 𝜏2) = true.

Theorem 4.3 (Algorithmic Termination). If Γ ⊢ 𝜏1 : 𝜅 and Γ ⊢ 𝜏2 : 𝜅, then sub(Γ, 𝜏1, 𝜏2) = 𝑏.

Proofs are given in Appendix A.6 to A.9 and involve the usual tedium of proving transitivity

elimination for the subtyping relation.

Note that the subtyping algorithm never needs to look at the body 𝜏12 of a recursive type, i.e.,

it’s actual definition. It merely inspects the bound 𝜏11. That is the central feature of our semantics.

Only the equivalence relation needs to consider 𝜏12 — unless that can also be avoided through the

use of canonicalisation, as we will explore further in Section 5. Hence, a subtyping check 𝜏1 ≤ 𝜏2
between two recursive types simply consists of climbing the supertype ladder of 𝜏1 until 𝜏2 is found.

It fails when the top type is reached before that event. In other words, up to equivalence, subtyping

works like with nominal subtyping (a.k.a. inheritance), and the cost of a subtyping check is at worst

linear in the depth of the declared supertype hierarchy of the left-hand type (assuming equivalence

is made constant-time via canonicalisation). That a recursive type is in fact a correct subtype of its

supertype is only checked “once”, when the type’s wellformedness is verified.

4.5 Metatheory
The 𝜆misu calculus enjoys the standard syntactic type soundness properties:

Theorem 4.4 (Preservation). If · ⊢ 𝑒 : 𝜏 and 𝑒 ↩→ 𝑒′, then · ⊢ 𝑒′ : 𝜏 .

Theorem 4.5 (Progress). If · ⊢ 𝑒 : 𝜏 and 𝑒 is not a value 𝑣 , then 𝑒 ↩→ 𝑒′ for some 𝑒′.

The proofs of these properties are given in Appendix A.10 to A.12 . Due to the presence of higher-

order types, they involve the usual diversion through an algorithmic subtype relation, in order

to be able prove appropriate inversion lemmas. This essentially is the algorithm already given in

Figure 3.

As a side effect, the correctness proof for this algorithm also establishes termination, and thereby

decidability of the subtype relation, and in turn decidability of type checking in general:

Theorem 4.6 (Decidability). All relations defined in Figures 1 and 2 are decidable.

5 A FRAGMENTWITH SHALLOW SUBTYPING
Now that we have a general and well-behaved theory of pre-declared subtyping between iso-

recursive types, we can investigate its algorithmic implications a bit more. As an immediate

observation, the 𝜆misu calculus is completely liberal in its use of higher-order types. That comes

at a price, in terms of both semantic and algorithmic complexity. Can we isolate a fragment that

avoids this cost but is still sufficiently expressive for many practical purposes?

5.1 Analysis
Let us take a closer look at the subtyping algorithm from Figure 3 again. Assuming Γ, 𝜏1, and 𝜏2 are
already normalised, most cases just traverse the structure of these types. The only critical cases are

those for neutral types. In conventional systems of higher-order subtyping, neutral types are those
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of the form 𝑇 [𝛼], which cannot be reduced. In 𝜆misu, neutral types include 𝑇 [𝜇 . . . ], i.e., the root
inside the elimination context 𝑇 can either be a type variable or a 𝜇-type.

As discussed in Section 4.4, the root of a neutral type is promoted to its bound by the algorithm,

i.e., its least supertype. If that supertype is either a type tuple or a type function, this will generally

produce a new redex at the innermost level of 𝑇 . For example, 𝑇 [𝛼] [⟨𝜏1, 𝜏2⟩/𝛼] with 𝑇 = [_] .2
produces ⟨𝜏1, 𝜏2⟩.2.

Redexes for tuple projection are not a big deal, since they only create a level of indirection that

could be handled directly by the algorithm without actually rewriting the type. However, if the

new redex is an application, then 𝛽-reduction implies substitution. Consider these type functions:

𝜏1 = 𝜆𝛼 :Ω. 𝜇𝛽≤𝜏0. {. . . } 𝜏2 = 𝜆𝛼 :Ω. 𝜇𝛽≤𝜏1 (𝛼 × 𝛼). {. . . } 𝜏3 = 𝜇𝛽≤𝜏2 . . . .

Let’s say type-checking a program involves checking 𝜏3 (nat) ≤ 𝜏1 (nat × nat). Assuming that both

types are already normalised (e.g., because we normalise all types occurring in the source upfront),

we enter sub
′
and reach the case for 𝜇 with 𝑇 = [_] nat. That produces the term 𝑇 [𝜏2] = 𝜏2 (nat)

on the right-hand side. With that we recurse. But 𝜏2 (nat) is a new redex that didn’t exist in the

program. So, the algorithm needs to normalise it now, which involves 𝛽-reduction and substituting

nat for 𝛼 in 𝜏2’s entire, potentially large, body. Worse, it has to transitively substitute 𝛼 in the bound

𝜏1 (𝛼 × 𝛼) — technically, it goes up the entire supertype chain, and in the worst case recomputes

all their bodies. In other words, although we avoid textual “code duplication” (in the sense of

Section 2.3), we still have a lot of algorithmic redundancy.

We cannot prevent substitution altogether — except by removing type functions. But it would

be a jolly big improvement of we could keep substitutions shallow, i.e., avoid traversals deep into

complex type definitions. What if we could syntactically restrict the use of types such that every

complex type — for some definition of “complex” — that occurs during type checking of terms is

closed by construction? Then substitution can just ignore and skip over them.

Wait, you’ll think, wouldn’t that be useless? The whole point of having type functions is to be

able to parameterise complex types.

Well, it turns out that higher-order iso-recursive types give us a cute way out: we can parameterise

them on the inside, without applications becoming redexes — because (𝜇𝛽≤𝜏 .𝜆𝛼 :𝜅.𝜏1) (𝜏2) is already
in normal form. That is, we can abuse recursive types to “guard” against 𝛽-reduction, without

losing the ability to add parameters. As a simple example, consider this polymorphic function:

fst = 𝜆𝛼 ≤⊤. 𝜆𝑥 : {𝛼, 𝛼, 𝛼}. 𝑥 .1

Let’s say we consider records, a.k.a. structs, “complex” types — like many languages do by requiring

a definition for them — and want to avoid having to substitute into {. . . }, ever. If we defined

triple = 𝜇 _ ≤⊤Ω→Ω . 𝜆𝛼 : Ω. {𝛼, 𝛼, 𝛼}

and then, instead of the above, wrote the following term of type ∀𝛼 ≤⊤. triple(𝛼) → 𝛼 :

fst
′ = 𝜆𝛼 ≤⊤. 𝜆𝑥 : triple(𝛼). (unroll 𝑥).1

then instantiating that generic function, say, via fst
′
int, would produce the perfectly accurate

function type triple(int) → int. Yet the substitution doesn’t need to touch triple at all, because its

definition is closed and moreover, the application triple(int) is irreducible.7

7
As usual, abstracting into a type constructor prevents covariant subtyping on 𝛼 here, but that can be recovered by adding

variance annotations to the language, which are an orthogonal extension [Steffen 1997], see Section 7.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 234. Publication date: October 2023.



Mutually Iso-recursive Subtyping (Expanded) 234:19

5.2 A Syntactic Restriction
We can take the scheme just described to its logical conclusion where all complex types are “locked

away” inside a 𝜇-type, and moreover all 𝜇-types are essentially closed. Then substitutions can ignore

complex types entirely.

Let’s make this more systematic. Consider the following stratified type grammar for 𝜆misu:

(value types) 𝜏𝑣 ::= 𝑏 | ⊤ | 𝛼 (𝜏𝑣) | 𝛼.𝑖 (𝜏𝑣)
(composite types) 𝜏𝑐 ::= 𝜏𝑣 | 𝜏𝑐 × 𝜏𝑐 | 𝜏𝑐 → 𝜏𝑐 | ∀𝛼≤𝜏𝑣 .𝜏𝑐
(defined types) 𝜏𝑑 ::= 𝜆(𝛼 :𝜅).𝜏𝑣 | 𝜇⟨𝛼≤𝜆𝛼 :𝜅.𝜏𝑣⟩.⟨𝜆𝛼 :𝜅.𝜏𝑐⟩

(expressions) 𝑒 ::= 𝜆𝑥 :𝜏𝑣 .𝑒 | 𝜆𝛼≤𝜏𝑣 .𝑒 | roll𝜏𝑣 𝑒 | . . .
(programs) 𝑝 ::= type 𝛼=𝜏𝑑 in 𝑝 | 𝑒

This grammar implements several crucial restrictions:

(1) Types occurring in terms 𝑒 can only take the simple form of value types 𝜏𝑣 , which are either

primitive, like ⊤ or a base type 𝑏 (thrown in here for illustration), or neutral ones of the form

𝑇 [𝛼] with a 𝑇 also consisting of only value types.

(2) In contrast, composite types 𝜏𝑐 can only occur inside recursive types. Likewise type tuples.

(3) Recursive types, in turn, have to be named by a type definition, which can only occur in global

scope. Type definitions may also introduce (parameterised) aliases for value types.

Here, we are making the naming mechanism for types that we alluded to in Section 2.3 explicit.

Semantically, named types are still just equivalent to their expansion. However, we impose that

each defined type 𝜏𝑑 has to be well-formed before it is substituted, i.e., it has to be closed, up to

preceding definitions that have already been checked and substituted into it. In other words, we

enforce the following typing rule for programs 𝑝 (note the empty context):

· ⊢ 𝜏𝑑 : 𝜅 · ⊢ 𝑝′ [𝜏𝑑/𝛼] : 𝜏
· ⊢ type 𝛼=𝜏𝑑 in 𝑝′ : 𝜏

By restricting the surface syntax like this, all type applications initially form neutral types,

all type arguments are primitive or neutral types, and so are all type bounds. More importantly,

composite types are always guarded by a 𝜇-binder, with no outer 𝜆-bound type variables in scope.

For the most part, these restrictions are preserved under substitution, except that substitution

may make lambdas and (closed!) 𝜇-types appear in value types. Consequently, after expansion of

type definitions, the structure of value types is slightly richer:

(extended value types) 𝜏𝑣′ ::= 𝑏 | ⊤ | 𝛼 (𝜏𝑣′ ) | 𝜏𝑑 .𝑖 (𝜏𝑣′ ) | 𝜆(𝛼 :𝜅).𝜏𝑣′

Yet, altogether, this still ensures that no 𝛽-reduction ever needs to perform substitution inside

a composite or recursive type, because they are all closed and remain so. The only types that

substitutions have to traverse are type applications, abstractions, and projections. We call such

substitutions shallow, write them 𝜏𝑣′ ⌈𝜏 ′𝑣′/𝛼⌉, and we can define them as follows:

𝛼 ⌈𝜏/𝛼⌉ = 𝜏

(𝜏 ′ .𝑖) ⌈𝜏/𝛼⌉ = (𝜏 ′ ⌈𝜏/𝛼⌉) .𝑖
(𝜏1 𝜏2) ⌈𝜏/𝛼⌉ = (𝜏1⌈𝜏/𝛼⌉ 𝜏2⌈𝜏/𝛼⌉)⇓

(𝜆𝛼 ′
:𝜅.𝜏 ′) ⌈𝜏/𝛼⌉ = 𝜆𝛼 ′

:𝜅. 𝜏 ′ ⌈𝜏/𝛼⌉
𝜏 ′ ⌈𝜏/𝛼⌉ = 𝜏 ′ otherwise

The case for applications, where such a substitution may still introduce a redex, is defined in the

style of a hereditary substitution that performs reduction on the fly and thereby preserves normal
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forms [Watkins et al. 2004; Abel 2009]. This shallow reduction 𝜏⇓ is defined as follows:
8

((𝜆𝛼 :𝜅.𝜏1) 𝜏2)⇓ = 𝜏1⌈𝜏2/𝛼⌉
𝜏⇓ = 𝜏 otherwise

That leads to the following, efficient subtype algorithm on extended value types:

sub𝑣 (Γ, 𝜏1, 𝜏2) = 𝜏1 ≡ 𝜏2 ∨ sub
′
𝑣 (Γ, 𝜏1, 𝜏2)

sub
′
𝑣 (Γ, _,⊤) = true

sub
′
𝑣 (Γ, 𝛼 𝜏, 𝜏2) = sub𝑣 (Γ, (𝜏1 𝜏)⇓, 𝜏2) where 𝜏1 = Γ(𝛼)

sub
′
𝑣 (Γ, 𝜏 ′.𝑖 𝜏, 𝜏2) = sub𝑣 (Γ, (𝜏1 𝜏)⇓, 𝜏2) where 𝜏1 = bound (𝜏 .𝑖)

sub
′
𝑣 (Γ, 𝜆𝛼 :𝜅.𝜏1, 𝜆𝛼 :𝜅.𝜏2) = sub𝑣 ((Γ, 𝛼≤⊤𝜅), 𝜏1, 𝜏2)

sub
′
𝑣 (Γ, _, _) = false otherwise

bound (𝜏 .1) = 𝜏1 where 𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′
bound (𝜏 .2) = 𝜏2⌈𝜏 .1/𝛼1⌉

The auxiliary function bound produces the direct supertype of a recursive type according to rule

S-Rec-Tup. This function can be pre-computed, such that the substitution it performs for 𝜏 .2 (and

others in the case of the 𝑛-ary generalisation) can be dealt with once at definition time of the type.

We still have to check type equivalence first in sub𝑣 . But by the same argument, it suffices to

perform a shallow traversal for this, provided that all recursive types are canonicalised initially,

such that comparing 𝜇’s is a constant-time check. The upshot then is that neither of these type

comparison algorithms ever needs to touch composite types or the bodies of recursive types.

As for checking type definitions themselves, that will of course have to perform a subtype check

on the composite types involved. But every composite type 𝜏𝑐 occurring in a program is only ever

involved in a subtype check on two occasions: (1) once to verify its originating definition (with 𝜏𝑐
on the left), (2) each time a subtype of it is declared (with 𝜏𝑐 on the right). Furthermore, since this

check again merely involves sub𝑣 at the leaves, it is typically linear in the size of 𝜏𝑐 .

All this seems very convenient! But what do we lose? Is it a reasonable restriction to work with?

Yes. Of course, this is exactly what languages with nominal subtyping (and generics) have always

been happy with. In such type systems, all types are either primitive, or nominal types, possibly

applied to a list of type arguments of similar shape, like our value types. In checking the subtype

relation, the languages’ type checkers have to expand (read: substitute) type parameters, but they

never need to substitute into type definitions, such as class bodies.
9

In other words, what we have arrived at can be viewed as a type-theoretic reconstruction of

the subtyping semantics in nominal type systems — except that all of our types are still structural

in the sense that equivalent recursive types are identified. Which disentangles subtyping from

nominal semantics and lets us dub this semantics “nominal typing up to canonicalisation”.

Finally, note that there is some freedom regarding the role of different composite type constructors

in the definition of the grammar above. For example, even nominal languages often treat (non-

recursive) function types structural. That can be reflected easily by moving arrow types from 𝜏𝑐 to

𝜏𝑣 , for the price of somewhat less shallow substitutions.

8
We don’t need to worry about reducing projection ⟨𝜏1, 𝜏2 ⟩.𝑖 , because the stratified syntax ruled out bare tuples.

9
However, unlike most of those languages, our system also allows for higher-order “generics”, which is why we also have

“shallow lambdas” arise. Of course, a restriction to first-order type constructors would get rid of those.
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(types) 𝑇 ::= X | 𝑁
(nominal types) 𝑁 ::= C⟨𝑇 ⟩

(classes) 𝐶 ::= class C⟨X<:𝑁 ⟩<:𝑁 {𝑇 x; . . .}
(programs) 𝑃 ::= 𝐶

Types (⟦𝑇⟧ ∈ 𝜏𝑣 ) ⟦X⟧ = 𝛼X

⟦Object⟧ = ⊤
⟦C⟨𝑇 ⟩⟧ = 𝛼C ⟦𝑇⟧

Classes (⟦𝐶⟧ ∈ 𝜆𝛼 :𝜅.𝜏𝑣 ) ⟦class C⟨X<:𝑁 ⟩<:𝑁 ′ {𝑇 x}⟧ = 𝜆𝛼X:Ω.⟦𝑁
′
⟧

Type Representation (⟦𝑁⟧

∗
𝑃
∈ 𝜏𝑐 ) ⟦Object⟧∗

𝑃
= {}

⟦C⟨𝑇 ⟩⟧∗
𝑃

= 𝜏 [⟦𝑇⟧/𝛼 ] iff ⟦𝑃 (C)⟧∗
𝑃
= 𝜆𝛼 :𝜅.𝜏

Class Representation (⟦𝐶⟧∗
𝑃
∈ 𝜆𝛼 :𝜅.𝜏𝑐 ) ⟦class C⟨X<:𝑁 ⟩<:𝑁 ′ {𝑇 x}⟧∗

𝑃
= 𝜆𝛼X:Ω.{𝜏, ⟦𝑇⟧} iff ⟦𝑁 ′

⟧

∗
𝑃
= {𝜏 }

Programs (⟦𝑃⟧ ∈ 𝜏𝑑 ) ⟦𝑃⟧ = 𝜇⟨𝛼C≤⟦𝐶⟧⟩.⟨⟦𝐶⟧∗𝑃 ⟩ iff 𝑃 = 𝐶

Fig. 4. FGJ syntax and translation

5.3 Encoding Featherweight Generic Java
In order to have evidence that the 𝜆misu-calculus and the fragment we just defined really is expressive

enough to encode the subtyping exhibited by typical languages, we give an encoding of the instance

types of Featherweight Generic Java (FGJ) [Igarashi et al. 2001] as a representative candidate.

Figure 4 shows the syntax of FGJ class definitions and rules for translating their instance types

into corresponding types from the shallow 𝜆misu fragment. We consider a variant of FGJ without

F-bounded quantification, since we omitted F-bounded quantification from the presentation in this

paper. Furthermore, we make the simplifying assumption that the classes in the program have been

ordered with respect to their subtyping hierarchy, i.e., classes only inherit from classes earlier in

the program — inheritance must be non-cyclic in Java, so programs can always be rearranged that

way. The details of the FGJ type system can be found in Appendix C.1 .

For the reasons discussed at the end of Section 4.3, our translation only is for the type hierarchy

of a FGJ program, and does not consider method bodies. While it is possible to express regular

methods in plain 𝜆misu, overriding cannot be translated without further additions to the calculus.

FGJ types𝑇 are translated to value types ⟦𝑇⟧. The translation of classes𝐶 is split into translating

their bound ⟦𝐶⟧ into (functions over) value types, and translating their representation ⟦𝐶⟧∗ into
(functions over) composite types, with the auxiliary translation of type representations ⟦𝑁⟧

∗
to

handle superclasses. We write 𝑛-ary tuples using record syntax and rely on depth/width subtyping

of their encoding (cf. Section 4.1). Because all classes can be mutually recursive, a program is

translated into a single defined 𝜇-type (assuming the 𝑛-ary generalisation of 𝜇-types here). This

matches the fact that Java has a single global namespace for classes.

A key lemma is that this translation preserves subtyping, as it should:

Lemma 5.1 (FGJ Subtype Translation). Let Δ ⊢fgj ok.
(1) If Δ ⊢fgj 𝑇1 ≤ 𝑇2 and Δ ⊢fgj 𝑇1 ok, then ⟦Δ⟧ ⊢misu ⟦𝑇1⟧ ≤ ⟦𝑇2⟧.

(2) If Δ ⊢fgj 𝑁1 ≤ 𝑁2 and Δ ⊢fgj 𝑁1 ok, then ⟦Δ⟧ ⊢misu ⟦𝑁1⟧
∗
𝑃
≤ ⟦𝑁2⟧

∗
𝑃
.

(3) If Δ ⊢fgj 𝐶 ok, then ⟦Δ⟧ ⊢misu ⟦𝐶⟧
∗
𝑃
≤ ⟦𝐶⟧.

From that and other auxiliary lemmas we can prove correctness of the translation:

Theorem 5.2 (FGJ Translation Correctness). If ⊢fgj 𝑃 ok, then · ⊢misu ⟦𝑃⟧ : 𝜅.

5.4 Wasm
An iso-recursive semantics with a type structure like shown in Section 5.2 has been adopted for a

proposed extension of Wasm [Haas et al. 2017] with recursive types [Rossberg 2022].
10
Wasm’s

10
Though in the first iteration of the proposal, type functions are not yet included, which simplifies the semantics further.
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module system provides strong modularity with type-safe separate compilation and linking and no

ambient name space, which requires a structural notion of types that can be duplicated, matched

up, and checked for equivalence at link time. Iso-recursive types fit the bill.

Currently, “composite” types in that proposal encompasses functions, structures, and arrays.

All these types are always interpreted as iso-recursive. However, Wasm does not require explicit

roll/unroll operations; rather, as is standard practice, these are implicit in the typing rules of the

respective introduction and elimination forms (i.e., instructions).

Wasm’s semantics depends on subtype checks at various stages:

(1) during compilation, to validate the input module;

(2) during linking, to ensure that provided import values match declared import types;

(3) during execution, for checking the types of values against cast instructions.

Since even compilation and linking of a Wasm module can be dynamic — e.g., an app may load

additional modules in reaction to user activity — it is vital that subtype checks are efficient in all

phases, because many such checks are often involved. Production Wasm engines are expected

to employ runtime optimisations like cross-module type canonicalisation. Dynamic casts are

implemented using standard techniques for casting along linear supertype hierarchies in constant

time [Ducournau 2011], by assigning type identities to distinct canonical types.

The presented type system has been implemented in Wasm engines like V8 and SpiderMonkey.

Multiple compilers have already been developed that target it, including ones for Java and Dart, as

well as ongoing work compiling OCaml, Scheme, Kotlin, and others.

As a low-level VM, compilation to Wasm requires laying out runtime data structures in the same

manner as a native code compilation would. For example, consider the following classes:

class 𝐶 {
𝑎 : Int

𝑓 (𝑥 : Int) : Int {return 𝑥 + 𝑎}
}

class 𝐷 <: 𝐶 {
𝑏 : Int

override 𝑓 (𝑥 : Int) : Int {return 𝑥 + 𝑎 + 𝑏}
𝑔(𝑥 : Int) : Bool {return 𝑥 < 𝑓 (𝑎)}

}
A compiler targeting Wasm could produce something akin to the following types and functions:

𝑐 = 𝜇⟨𝛼≤⊤, 𝛽≤⊤⟩.⟨{vtable : 𝛽, a : int}, {f : 𝛼 → int → int}⟩
𝑑 = 𝜇⟨𝛼≤𝑐.1, 𝛽≤𝑐.2⟩ .⟨{vtable : 𝛽, a : int, b : int}, {f : 𝛼 → int → int, g : 𝛼 → int → bool}⟩

𝑐_𝑓 = 𝜆this : 𝑐.1. 𝜆𝑥 : int . let this′ = unroll this in 𝑥 + this
′ .a

𝑑_𝑓 = 𝜆this : 𝑐.1. 𝜆𝑥 : int . let this′ = unroll (cast this <: 𝑑.1) in 𝑥 + this
′ .a + this

′ .b
𝑑_𝑔 = 𝜆this : 𝑑.1. 𝜆𝑥 : int . let this′ = unroll this in 𝑥 < this

′ .vtable.f (this′ .a)

This is a standard implementation of objects with “vtables” of pre-method pointers. Instance type

and vtable type of each class are mutually recursive. However, Wasm does not currently support

self types (cf. Section 4.3), so that the compilation of an overriding function like 𝑑_𝑓 has to insert a

(checked) downcast as an escape hatch for covariantly specialising the receiver argument. Notably,

this is the only place where such a cast is needed outside the compilation of generics or interfaces.

6 RELATEDWORK
The 𝜆misu calculus integrates iso-recursive types with higher-order subtyping. We are not aware of

previous work that investigates a similar combination, but both have been investigated separately.

Iso-recursive types. Iso-recursive types are routinely viewed as a type-theoretic model of type

recursion as it commonly appears in programming languages. However, there is surprisingly little

literature on iso-recursive types, their expressiveness, and their practical implementation.
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The most important result probably is by Abadi & Fiore [1996], who proved that iso-recursive

types are as expressive as equi-recursive ones, for the price of a program transformation that

synthesises coercion terms where the equi-recursive system would merely invoke the type con-

version rule. But these coercions typically have to copy the entire value, so are very costly. They

do not consider subtyping, but we conjecture that their argument would extend to a system with

subtyping, because subsumption can as well be replaced by a narrowing coercion operator.

Zhou et al. [2022] propose an alternative formulation of Amber-style subtyping that allows a

more efficient check, but it remains unclear how well it scales to richer type systems. The case they

optimise does not arise in our system with declared subtyping, and their optimisation does not

help to avoid the problematic size blow-up in encodings of mutually recursive types.

Most work on the semantics of subtyping for recursive types focusses on the equi-recursive

model [Amadio and Cardelli 1993; Brandt and Henglein 1998; Gapeyev et al. 2002]. The first

introduction of iso-recursive subtyping is probably due to Cardelli [1986] and his experimental

language Amber ; which prompted the “Amber rule”. Ligatti et al. [2017] suggest a more expressive

subtyping relation; however, in doing so, they essentially fall back to coinduction, thus giving up on

the primary advantage of iso-recursion. A similar relaxation of iso-recursion towards coinduction

has been brought up earlier by Shao, as reported by Crary et al. [1999] (who also coined the

term “iso-recursive”), though they were not interested in subtyping but rather motivated by type

abstraction and modularity concerns. Our work goes in the opposite direction: give up some

expressiveness (and convenience) for the sake of enabling a practical implementation in a runtime.

The idea of employing higher-kinded iso-recursive types to express irregular data types and

mutual recursion seems to be folklore knowledge. The first (and only) published use that we know

of was in the type-theoretic formalisation of Standard ML by Harper & Stone [2000]. Interestingly,

although not entirely trivial, this generalisation apparently seemed obvious enough to Harper &

Stone that they neither discussed it nor provided a reference.

Higher-order Subtyping. Pierce & Steffen [1997], and in parallel, Compagnoni [1995], were the

first to develop a meta-theory for higher-order subtyping. Our proofs mostly follow the structure

of Compagnoni’s development (minus intersection types, which her work includes), with some

elements taken from Pierce & Steffen. Steffen [1997] afterwards extended this line of work with

constructor polarities (variance annotations). Abel & Rodriguez [2008] gave a somewhat simpler ac-

count of the meta-theory that proves strong normalisation with the help of hereditary substitutions,

which is more amendable to mechanisation. None of these works considers recursive types.

F-bounded Quantification. Our tuple-bounded 𝜇-types as in full 𝜆misu have an internal dependency

that has some resemblance to F-bounded quantification. Originally suggested by Canning et

al. [1989], F-bounded quantification is available in many object-oriented languages. A meta-theory

for F-bounds has later been developed by Ghelli and others [Ghelli 1997; Baldan et al. 1999], but

their system is very general and undecidable. Glew [2012] gives an efficient subtype algorithm for a

decidable version of that system, more similar to what is typically employed in practical languages.

F-bounded quantification for 𝜇-types would be a natural extension to our system (Section 7). But

we are unaware of any investigation of combining F-bounded quantification with higher-order

subtyping or with iso-recursive types.

Nominal Subtyping. The shallow fragment of 𝜆misu introduced in Section 5 has close similarities

with nominal subtyping. In the literature, nominal subtyping is typically modelled in a more mono-

lithic fashion. The most dominant example of this probably is the formalisation of Featherweight

Java [Igarashi et al. 2001]. In that system, the class hierarchy, and therefore the subtype relation,

exists globally in an ambient program context that is invoked by the typing rules and that encom-

passes the entire program. Our 𝜇-types can be viewed as a minimal, type-theoretic reconstruction
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of the subtyping semantics in such a system, but without actually depending on nominality itself

(which could hence be introduced orthogonally).

Declared Subtyping. In an unpublished manuscript, Hosoya et al. [1998] have a different take on

user-declared subtyping. In their system, the subtype declaration is not part of the type definition,

but an independent, term-level assertion. That provides some extra flexibility, although it is unclear

to us what that would be used for in practice. The downside is a more complex operational semantics,

because subtype declarations need to be maintained and scope-extruded during reduction, in order

to maintain Type Preservation. Likewise, all typing rules need to be indexed with an extra set

of subtype assumptions, in addition to the subtype bounds appearing in the regular context. In

contrast, the approach taken with 𝜆misu is unintrusive and structurally minimalist, both static and

dynamic semantics keep their standard form. Another difference is that their system only allows

subtyping to be declared between type constructors of the same kind. That makes it incapable of

handling common examples of heterogeneous subtyping: neither class 𝐵 nor 𝐷 from the example

in Section 4.3 is expressible in their system. It might be possible to extend it via more complex

subtype assumptions, but the details of how to maintain decidability for such an extension are

not obvious, because their definition of “consistent assumptions” 𝐿 to check subtype declarations

essentially implements a coinductive semantics (𝐿 is checked with itself in the context).

DOT Calculi. Another system able to readily express mutually recursive subtyping is the DOT

calculus [Rompf and Amin 2016]. Its notion of path-dependent types allows types to refer to

themselves recursively by detour through the term level and by relying on the dependently-typed

fixpoint operator that is built into the semantics. In his recent thesis, Martres [2022] shows that

DOT can encode FGJ, including methods. However, DOT and its descendent calculi come with a

rather heavyweight meta-theory and type-checking procedure, whereas our goals are minimising

algorithmic cost as well as staying close to more standard semantics.

7 DISCUSSION AND FUTUREWORK
The 𝜆misu calculus provides a fairly complete semantics for recursive types as found in mainstream

programming languages, including both regular and irregular inter- and intra-recursion subtyping

at higher kinds — with two primary omissions subject to future work, which we discuss below: (1)

subtyping is singular, i.e., every type can have at most one supertype; (2) bounds cannot recursively

refer to themselves, i.e., F-bounded recursion [Canning et al. 1989; Ghelli 1997] is not supported.

Other than that, the calculus’ main limitation (as well as feature) compared to more puristic

type theories is that recursive types can only be in a subtype relation if declared so upfront. The

slogan of “nominal typing up to canonicalisation” describes the intuition behind this. We conjecture

that under this general approach, (a) non-recursive structural types, (b) recursive structural types

without subtyping, and (c) recursive nominal types with subtyping, can all be expressed, covering

a fairly wide range of practical programming languages (though some languages would obviously

benefit from also adding the — mostly orthogonal — features discussed below). There are few

practical languages that inhabit the missing point in the spectrum, that of fully structural recursive

subtyping. In Wasm, compiling languages outside this range will require additional runtime casts.

Multiple Supertypes. Extending 𝜆misu with support for multiple supertypes amounts to adding

intersection types to the system. For example, they would allow forming a type like

𝜏 = 𝜇𝛼≤(𝜏1 ∧ 𝜏2 ∧ 𝜏3).𝜏 ′

such that 𝜏 ≤ 𝜏𝑖 for all 𝑖 ∈ {1, 2, 3}. Compagnoni [1995] already developed the meta-theory of

higher-order subtyping with intersection types. Their impact is almost entirely orthogonal to our

extension with iso-recursive types, and in principle, we foresee no problem in combining both.
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However, subtyping and type checking become rather expensive in the presence of intersection

types. Subtyping for 𝜇-types would essentially need to perform a search in a directed acyclic graph,

versus just a linear search in a linear subtype hierarchy in 𝜆misu as is. Type checking would have to

compute least upper bounds when elimination constructs like application or projection encounter

intersection types. While it is probably not possible to bring down the cost of the subtyping check

itself — programming languages with multiple inheritance have the same problem — it may still be

possible to reduce the overall cost of type checking and its use of these expensive subtype checks

through suitable restrictions on the formation of intersections. Interestingly, the problem can be

vastly reduced if we limit the use of intersections to 𝜇-bounds: intersections will only enter the type

environment as the bounds of 𝜇-type variables, and hence arise only during the well-formedness

check for 𝜇, which only involves subtyping. Intersections would not show up during type checking

of terms. But it is not clear whether such a systemwould be sufficient: intersections are e.g. desirable

on the bounds of quantified types. Perhaps it is sufficient to use a 𝜇-type itself as a bound in such a

case. That is, in place of abstracting ∀𝛼 ≤ 𝜏1∧𝜏2 .𝜏 , it may conceivable to use ∀𝛼 ≤ (𝜇𝛼 ′ ≤ 𝜏1∧𝜏2.𝛼 ′).𝜏 .
We leave further investigation to future work.

F-bounded 𝜇-types. Another feature that shows up in many contemporary object-oriented

languages is F-bounded quantification [Canning et al. 1989; Ghelli 1997], where a type variable

may appear in its own bound. In Section 3.3, we consciously skirted the introduction of F-bounded

quantification for expressing intra-recursion subtyping. Of course, if we were to buy into F-bounds

anyway, then the extension with tuple-kinded 𝜇-types as in the full 𝜆misu calculus would become

unnecessary, since they could be encoded easily:

𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 := 𝜇𝛼≤⟨𝜏1, 𝜏2 [𝛼.1/𝛼1]⟩.𝜏 [𝛼.1/𝛼1, 𝛼 .2/𝛼2]
Unfortunately, a naive extension with unrestricted F-bounds would immediately render the type

system undecidable, due to its higher-order nature. For example, the type 𝜇𝛼≤𝛼 (𝛼 (𝜏)).𝜏 ′ would
cause promotion in the subtype algorithm from Figure 3 to loop with an ever-expanding type

elimination context. There are solutions to this, e.g., involving suitable syntactic restrictions on

F-bounds, but working out the details such that they support our encodings and other common use

cases, while maintaining decidability, requires some investigation.

Variance on Type Parameters. Another extension often desired for the combination of type

constructors and subtyping is the ability to annotate type parameters with variances, such that

applications of a constructor can still subtype co- or contravariantly. For example, this would allow

the type triple(nat) from Section 5.1 to be recognised as a subtype of triple(int).
Fortunately, Steffen already worked out all the necessary machinery for adding such annotations

to higher-order subtyping in his thesis [Steffen 1997]. This extension is completely orthogonal to

the mechanism considered in this paper and could readily be added to 𝜆misu.

Mechanisation. We have proved all relevant properties of 𝜆misu in the Appendix. Fortunately, we

were able to closely follow the ground works of Comapgnoni [1995] and Pierce and Steffen [1997].

But we would not mind to verify these proofs the “contemporary” way, in a theorem prover like

Coq. However, the meta-theory of higher-order subtyping in plain F
𝜔
≤ already is quite involved,

and especially the proof for transitivity elimination via rewriting of derivations difficult to render

in Coq. We are not aware of prior work tackling the mechanisation of F
𝜔
≤ . We hence have to leave

mechanised proofs for 𝜆misu to future work.
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A META-THEORY OF BASIC 𝜆misu

In this section, we prove the meta-theory of basic 𝜆misu with recursive types of the form 𝜇𝛼≤𝜏 .𝜏 ′. Ap-
pendix B will treat the extension to the full calculus with the more powerful form 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′.
For most part, our development closely follows either that of Pierce & Steffen [1997] or Com-

pagnoni’s [?], minus intersection types (other than the empty one, which corresponds to the top

type), but with the addition of type tuples and higher-order iso-recursive types.

A.1 Regularity
First, a few simple facts about higher-order top types.

Lemma A.1 (Kinding of Higher-Order Top). If ⊢ Γ ok, then Γ ⊢ ⊤𝜅 : 𝜅.

Proof. By induction on 𝜅. □

Lemma A.2 (Subtyping of Higher-Order Top). If Γ ⊢ 𝜏 : 𝜅, then Γ ⊢ 𝜏 ≤ ⊤𝜅 .

Proof. By induction on the derivation. The interesting cases are:

• Case Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 : 𝜅
– by inversion, Γ ⊢ 𝜏1 : 𝜅
– by induction, Γ ⊢ 𝜏1 ≤ ⊤𝜅
– by subtyping rule for recursive types, Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 ≤ 𝜏1
– by subtyping transitivity rule, Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 ≤ ⊤𝜅

• Case Γ ⊢ 𝜏 .𝑖 : 𝜅𝑖
– by inversion, Γ ⊢ 𝜏 : 𝜅1 × 𝜅2
– by induction, Γ ⊢ 𝜏 ≤ ⊤𝜅1×𝜅2
– by subtyping rule for projection, Γ ⊢ 𝜏 .𝑖 ≤ ⊤𝜅1×𝜅2 .𝑖
– by kinding rule for projection, Γ ⊢ ⊤𝜅1×𝜅2 .𝑖 : 𝜅𝑖
– by Lemma A.1, Γ ⊢ ⊤𝜅𝑖 : 𝜅𝑖
– by 𝛽-reduction of projection, ⊤𝜅1×𝜅2 .𝑖 ≡ ⊤𝜅𝑖
– by subtyping reflexivity rule, Γ ⊢ ⊤𝜅1×𝜅2 .𝑖 ≤ ⊤𝜅𝑖
– by subtyping transitivity rule, Γ ⊢ 𝜏 .𝑖 ≤ ⊤𝜅𝑖

• Case Γ ⊢ 𝜏1 𝜏2 : 𝜅
– by inversion, Γ ⊢ 𝜏1 : 𝜅2 → 𝜅 and Γ ⊢ 𝜏2 : 𝜅2
– by induction, Γ ⊢ 𝜏1 ≤ ⊤𝜅2→𝜅

– by subtyping rule for application, Γ ⊢ 𝜏1 𝜏2 ≤ ⊤𝜅2→𝜅 𝜏2
– by kinding rule for application, Γ ⊢ ⊤𝜅2→𝜅 𝜏2 : 𝜅

– by Lemma A.1, Γ ⊢ ⊤𝜅 : 𝜅

– by 𝛽-reduction of application, ⊤𝜅2→𝜅 𝜏2 ≡ ⊤𝜅
– by subtyping reflexivity rule, Γ ⊢ ⊤𝜅2→𝜅 𝜏2 ≤ ⊤𝜅
– by subtyping transitivity rule, Γ ⊢ 𝜏1 𝜏2 ≤ ⊤𝜅 □

This establishes ⊤𝜅 as a maximum element of kind 𝜅.

Lemma A.3 (Regularity).

(1) If Γ ⊢ 𝜏 : 𝜅, then ⊢ Γ ok.

(2) If Γ ⊢ 𝑒 : 𝜏 , then ⊢ Γ ok and Γ ⊢ 𝜏 : Ω.

Proof. Both by induction on the derivation. □

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 234. Publication date: October 2023.



Mutually Iso-recursive Subtyping (Expanded) 234:29

A.2 Type Reduction
Definition A.1 (Type Reduction). One-step 𝛽-reduction on types, written 𝜏 ↩→ 𝜏 ′, is defined by

the congruent closure of the following rules:

⟨𝜏1, 𝜏2⟩.𝑖 ↩→ 𝜏𝑖
(𝜆𝛼 :𝜅.𝜏1) 𝜏2 ↩→ 𝜏1 [𝜏2/𝛼]

The relation ↩→ on types is extended pointwise to contexts Γ. We write the reflexive, transitive closure

of ↩→ as ↩→∗
. The reflexive, transitive, symmetric closure is written ≡.

Definition A.2 (Neutral Type). A neutral type is one of the form 𝑇 [𝛼] or 𝑇 [𝜇𝛼≤𝜏1 .𝜏2].
The rest of this section proves the Church-Rosser property and closely follows the development of

Pierce & Steffen [1997], Section 3. First, we define parallel reduction ↩→→.

Definition A.3 (Parallel Reduction).

𝜏 ↩→→ 𝜏

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

𝜏1 × 𝜏2 ↩→→ 𝜏 ′
1
× 𝜏 ′

2

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

𝜏1 → 𝜏2 ↩→→ 𝜏 ′
1
→ 𝜏 ′

2

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

∀𝛼≤𝜏1.𝜏2 ↩→→ ∀𝛼≤𝜏 ′
1
.𝜏 ′
2

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

𝜇𝛼≤𝜏1.𝜏2 ↩→→ 𝜇𝛼≤𝜏 ′
1
.𝜏 ′
2

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

⟨𝜏1, 𝜏2⟩.𝑖 ↩→→ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩

𝜏 ↩→→ 𝜏 ′

𝜏 .𝑖 ↩→→ 𝜏 ′ .𝑖

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

⟨𝜏1, 𝜏2⟩.𝑖 ↩→→ 𝜏 ′
𝑖

𝜏 ↩→→ 𝜏 ′

𝜆𝛼 :𝜅.𝜏 ↩→→ 𝜆𝛼 :𝜅.𝜏 ′
𝜏1 ↩→→ 𝜏 ′

1
𝜏2 ↩→→ 𝜏 ′

2

𝜏1 𝜏2 ↩→→ 𝜏 ′
1
𝜏 ′
2

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

(𝜆𝛼 :𝜅.𝜏1) 𝜏2 ↩→→ 𝜏 ′
1
[𝜏 ′

2
/𝛼]

Parallel reduction is related to single- and multi-step reduction as follows:

Lemma A.4 (Relating Reductions).

(1) ↩→ ⊂ ↩→→
(2) ↩→∗ ⊃ ↩→→
(3) ↩→∗ = ↩→→∗

The following auxiliary lemma on substitutions is needed for the proof of Lemma A.6:

Lemma A.5 (Commuting Substitutions).

If 𝛼1 ≠ 𝛼2 and 𝛼1 ∉ ftv(𝜏2), then 𝜏 [𝜏1/𝛼1] [𝜏2/𝛼2] = 𝜏 [𝜏2/𝛼2] [𝜏1 [𝜏2/𝛼2]/𝛼1].
Substitution commutes with reductions:

Lemma A.6 (Substitution for Reduction).

(1) If 𝜏1 ↩→→ 𝜏 ′
1
and 𝜏2 ↩→→ 𝜏 ′

2
, then 𝜏1 [𝜏2/𝛼] ↩→→ 𝜏 ′

1
[𝜏 ′

2
/𝛼].

(2) If 𝜏1 ↩→→∗ 𝜏 ′
1
and 𝜏2 ↩→→∗ 𝜏 ′

2
, then 𝜏1 [𝜏2/𝛼] ↩→→∗ 𝜏 ′

1
[𝜏 ′

2
/𝛼].

(3) If 𝜏1 ↩→∗ 𝜏 ′
1
and 𝜏2 ↩→∗ 𝜏 ′

2
, then 𝜏1 [𝜏2/𝛼] ↩→∗ 𝜏 ′

1
[𝜏 ′

2
/𝛼].

As a consequence, an outermost redex can always be reduced directly:

Lemma A.7 (Outermost Reduction).

(1) If ⟨𝜏1, 𝜏2⟩.𝑖 ↩→∗ 𝜏 ′ with 𝜏 ′ ≠ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩.𝑖 for any 𝜏1 ↩→∗ 𝜏 ′

1
and 𝜏2 ↩→∗ 𝜏 ′

2
, then 𝜏𝑖 ↩→∗ 𝜏 ′.

(2) If (𝜆𝛼 :𝜅.𝜏1) 𝜏2 ↩→∗ 𝜏 ′ with 𝜏 ′ ≠ (𝜆𝛼 :𝜅.𝜏 ′
1
) 𝜏 ′

2
for any 𝜏1 ↩→∗ 𝜏 ′

1
and 𝜏2 ↩→∗ 𝜏 ′

2
, then 𝜏1 [𝜏2/𝛼] ↩→∗

𝜏 ′.
Lemma A.8 (Diamond Property for Parallel Reduction).

If 𝜏 ↩→→ 𝜏1 and 𝜏 ↩→→ 𝜏2, then 𝜏1 ↩→→ 𝜏 ′ and 𝜏2 ↩→→ 𝜏 ′ for some 𝜏 ′.

Proof. See Barendregt [?]. □
Corollary A.9 (Confluence (“Church-Rosser”)).

If 𝜏 ↩→∗ 𝜏1 and 𝜏 ↩→∗ 𝜏2, then 𝜏1 ↩→∗ 𝜏 ′ and 𝜏2 ↩→∗ 𝜏 ′ for some 𝜏 ′.
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A.3 Contexts
Context formation supports the obvious inversion lemmas:

Lemma A.10 (Inversion of Context Formation).

(1) If ⊢ Γ1, 𝑥 :𝜏, Γ2 ok, then Γ1 ⊢ 𝜏 : Ω by a proper subderivation.

(2) If ⊢ Γ1, 𝛼≤𝜏, Γ2 ok, then Γ1 ⊢ 𝜏 : 𝜅 by a proper subderivation.

Furthermore, the following properties hold type variables occurring in kinding derivations:

Lemma A.11 (Free Variables).

(1) If Γ ⊢ 𝜏 : 𝜅, then ftv(𝜏) ⊆ dom(Γ).
(2) If ⊢ Γ ok, then each 𝛼 ∈ dom(Γ) is bound exactly once.

A.4 Pre-Kinding
One structural difference between 𝜆misu and F

𝜔
≤ is that its kinding and subtyping judgements are

mutually dependent, due to the subtyping premise in rule K-Rec-Sup. In order to stratify the formal

development, we hence define a variation of the kinding relation that drops that premise. That is

okay for the purpose of proving strong normalisation of type reduction, because this premise is

only needed to ensure soundness of subtyping and term-level reduction, it does not affect type-level

reductions.

Definition A.4 (Pre-Kinding). The relation Γ ⊢′ 𝜏 : 𝜅 is the same as Γ ⊢ 𝜏 : 𝜅, but with the

following replacement rule for 𝜇-types:

Γ ⊢′ 𝜏1 : 𝜅 Γ ⊢′ 𝜏2 : 𝜅
Γ ⊢′ 𝜇𝛼≤𝜏1.𝜏2 : 𝜅

Context pre-kinding ⊢′ Γ ok is the same as ⊢ Γ ok, but using pre-kinding.

This relation is implied by ordinary kinding:

Lemma A.12 (Kinding Implies Pre-Kinding).

(1) If Γ ⊢ 𝜏 : 𝜅, then Γ ⊢′ 𝜏 : 𝜅.

(2) If ⊢ Γ ok, then ⊢′ Γ ok.

With this, we can largely follow Pierce & Steffen [1997], Section 4.

Definition A.5 (Algorithmic Pre-Kinding). The relation Γ ⊢′′ 𝜏 : 𝜅 is the same as Γ ⊢′ 𝜏 : 𝜅,

but with the following replacement rule for type variables:

Γ1 ⊢′′ 𝜏 : 𝜅 ⊢′′ Γ1, 𝛼≤𝜏, Γ2 ok
Γ1, 𝛼≤𝜏, Γ2 ⊢′′ 𝛼 : 𝜅

Algorithmic context pre-kinding ⊢′′ Γ ok is the same as ⊢′ Γ ok, but using algorithmic pre-kinding.

Lemma A.13 (Strengthening for Algorithmic Pre-Kinding).

(1) If Γ1, 𝑥 :𝜏
′, Γ2 ⊢′′ 𝜏 : 𝜅, then Γ1, Γ2 ⊢′′ 𝜏 : 𝜅.

(2) If Γ1, 𝛼≤𝜏 ′, Γ2 ⊢′′ 𝜏 : 𝜅 and 𝛼 ∉ ftv(Γ2) ∪ ftv(𝜏), then Γ1, Γ2 ⊢′′ 𝜏 : 𝜅.

(3) If ⊢′′ Γ1, 𝑥 :𝜏 ′, Γ2 ok, then ⊢′′ Γ1, Γ2 ok.
(4) If ⊢′′ Γ1, 𝛼≤𝜏 ′, Γ2 ok and 𝛼 ∉ ftv(Γ2), then ⊢′′ Γ1, Γ2 ok.

Both formulations of pre-kinding are equivalent:

Lemma A.14 (Eqivalence of Algorithmic Pre-Kinding).

(1) Γ ⊢′ 𝜏 : 𝜅 if and only if Γ ⊢′′ 𝜏 : 𝜅.

(2) ⊢′ Γ ok if and only if ⊢′′ Γ ok.

Proof. Each direction by induction on derivations. The only interesting case is the variable rule,

since all others are unchanged. □
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Lemma A.15 (Decidability of Algorithmic Pre-Kinding).

(1) The relation Γ ⊢′′ 𝜏 : 𝜅 is decidable.

(2) The relation ⊢′′ Γ ok is decidable.

Proof. The rules of algorithmic pre-kinding can be read as an algorithm bottom-up. This

algorithm terminates, because for every rule, all premises are on smaller syntactic structures than

the conclusion. □
Corollary A.16 (Decidability of Pre-Kinding).

(1) The relation Γ ⊢′ 𝜏 : 𝜅 is decidable.

(2) The relation ⊢′ Γ ok is decidable.

From the algorithmic formulation it also follows that all kinds are uniquely determined.

Corollary A.17 (Uniqeness of Kinds).

(1) If Γ ⊢′′ 𝜏 : 𝜅1 and Γ ⊢′′ 𝜏 : 𝜅2, then 𝜅1 = 𝜅2.

(2) If Γ ⊢′ 𝜏 : 𝜅1 and Γ ⊢′ 𝜏 : 𝜅2, then 𝜅1 = 𝜅2.

(3) If Γ ⊢ 𝜏 : 𝜅1 and Γ ⊢ 𝜏 : 𝜅2, then 𝜅1 = 𝜅2.

Proof.

(1) By induction on 𝜏 , using that algorithmic kinding is syntax-directed.

(2) Follows immediately from (1) and Lemma A.14.

(3) Follows immediately from (2) and Lemma A.12. □

Finally, we have a number of useful structural properties related to pre-kinding.

Lemma A.18 (Transposition of Pre-Kinding).

If Γ1, 𝛼1≤𝜏1, 𝛼2≤𝜏2, Γ2 ⊢′ 𝜏 : 𝜅 and ⊢′ Γ1, 𝛼2≤𝜏2, 𝛼1≤𝜏1, Γ2 ok, then Γ1, 𝛼2≤𝜏2, 𝛼1≤𝜏1, Γ2 ⊢′ 𝜏 : 𝜅.

Lemma A.19 (Weakening of Pre-Kinding).

If Γ ⊢′ 𝜏 : 𝜅 and ⊢′ Γ′ ok with Γ ⊆ Γ′, then Γ′ ⊢′ 𝜏 : 𝜅.

Lemma A.20 (Context Update with Pre-Kinding).

If Γ1, 𝛼≤𝜏1, Γ2 ⊢′ 𝜏 : 𝜅 and Γ1 ⊢′ 𝜏1 : 𝜅1 and Γ1 ⊢′ 𝜏2 : 𝜅1, then Γ1, 𝛼≤𝜏2, Γ2 ⊢′ 𝜏 : 𝜅.

Lemma A.21 (Substitution for Pre-Kinding). Suppose Γ1 ⊢′ 𝜏 : 𝜅.

(1) If Γ1, 𝛼≤⊤𝜅 , Γ2 ⊢′ 𝜏 ′ : 𝜅′, then Γ1, Γ2 [𝜏/𝛼] ⊢′ 𝜏 ′ [𝜏/𝛼] : 𝜅′.
(2) If Γ1, 𝛼≤⊤𝜅 , Γ2 ok, then ⊢′ Γ1, Γ2 [𝜏/𝛼] ok.
Lemma A.22 (Preservation of Pre-Kinding).

(1) If Γ ⊢′ 𝜏 : 𝜅 and 𝜏 ↩→∗ 𝜏 ′, then Γ ⊢′ 𝜏 ′ : 𝜅.
(2) If Γ ⊢′ 𝜏 : 𝜅 and Γ ↩→∗ Γ′, then Γ′ ⊢′ 𝜏 : 𝜅.

Corollary A.23 (Preservation of Kinding).

(1) If Γ ⊢ 𝜏 : 𝜅 and 𝜏 ↩→∗ 𝜏 ′, then Γ ⊢ 𝜏 ′ : 𝜅.
(2) If Γ ⊢ 𝜏 : 𝜅 and Γ ↩→∗ Γ′, then Γ′ ⊢ 𝜏 : 𝜅.

Lemma A.24 (Pre-Kind Invariance).

If Γ ⊢′ 𝜏1 : 𝜅1 and Γ ⊢′ 𝜏2 : 𝜅2 and 𝜏1 ≡ 𝜏2, then 𝜅1 = 𝜅2.

A.5 Strong Normalisation of Types
We prove strong normalisation – or termination – of type reduction by using Tait’s method [??],
based on pre-kinding.

Definition A.6 (Terminating Types).

(1) 𝜏 normal ⇔ ¬∃𝜏 ′ . 𝜏 ↩→ 𝜏 ′

(2) 𝜏 terminates ⇔ ∀𝜏 ′ . 𝜏 ↩→ 𝜏 ′ ⇒ 𝜏 ′ terminates

(3) 𝑇 terminates ⇔ 𝑇 [𝛼] terminates
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With this, we can define the standard logical predicate:

Definition A.7 (Type Interpretation).

⟦Ω⟧ = {𝜏 | 𝜏 terminates}
⟦𝜅1 × 𝜅2⟧ = {𝜏 | 𝜏 .1 ∈ ⟦𝜅1⟧ ∧ 𝜏 .2 ∈ ⟦𝜅2⟧}
⟦𝜅1 → 𝜅2⟧ = {𝜏 | ∀𝜏1 ∈ ⟦𝜅1⟧. 𝜏 𝜏2 ∈ ⟦𝜅2⟧}

⟦Γ⟧ = {𝛾 | ∀(𝛼≤𝜏) ∈ Γ. Γ ⊢ 𝜏 : 𝜅 ⇒ 𝛾 (𝛼) ∈ ⟦𝜅⟧}
Lemma A.25 (Soundness wrt. Termination (“Main Lemma”)).

If 𝜏 ∈ ⟦𝜅⟧, then 𝜏 terminates.

Proof. By induction on 𝜅. □

We need the following lemmas to prove the Fundamental Property of the logical relation.

Lemma A.26 (Neutral Types).

(1) If 𝑇 [𝛼] terminates, then 𝑇 [𝛼] ∈ ⟦𝜅⟧.

(2) If 𝑇 [𝜇𝛼≤𝜏1.𝜏2] terminates, then 𝑇 [𝜇𝛼≤𝜏1 .𝜏2] ∈ ⟦𝜅⟧.

Proof.

(1) By induction on 𝜅.

• Case Ω
– immediate by definition of ⟦Ω⟧

• Case 𝜅1 × 𝜅2
– let 𝑇1 = 𝑇 .1 and 𝑇2 = 𝑇 .2

– then 𝑇1 [𝛼] and 𝑇2 [𝛼] terminates

– by induction, 𝑇1 [𝛼] ∈ ⟦𝜅1⟧ and 𝑇2 [𝛼] ∈ ⟦𝜅2⟧

– by definition of ⟦𝜅1 × 𝜅2⟧, 𝑇 [𝛼] ∈ ⟦𝜅1 × 𝜅2⟧

• Case 𝜅1 → 𝜅2
– assume 𝜏1 ∈ ⟦𝜅1⟧

– by Main Lemma, 𝜏1 terminates

– let 𝑇 ′ = 𝑇 𝜏1
– then 𝑇 ′ [𝛼] terminates

– by induction, 𝑇 ′ [𝛼] ∈ ⟦𝜅2⟧

– by definition of ⟦𝜅1 → 𝜅2⟧, 𝑇 [𝛼] ∈ ⟦𝜅1 → 𝜅2⟧

(2) Analogous. □

Lemma A.27 (Termination under Substitution). If 𝜏 [𝜏 ′/𝛼] terminates, then 𝜏 terminates.

Lemma A.28 (Termination in Context). If both 𝑇 and 𝑇 [𝜏] terminate, then 𝜏 terminates.

Lemma A.29 (Closure under Expansion).

(1) If 𝑇1 and 𝑇2 terminate and 𝑇1 [𝜏1] ∈ ⟦𝜅1⟧ and 𝑇2 [𝜏2] ∈ ⟦𝜅2⟧, then 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] ∈ ⟦𝜅𝑖⟧.

(2) If 𝑇 terminates and 𝑇 [𝜏2 [𝜏1/𝛼]] ∈ ⟦𝜅⟧ and 𝜏1 ∈ ⟦𝜅1⟧, then 𝑇 [(𝜆𝛼 :𝜅1.𝜏2) 𝜏1] ∈ ⟦𝜅⟧.

Proof.

(1) By induction on 𝜅𝑖 .

• Case Ω
– by definition of ⟦Ω⟧, 𝑇1 [𝜏1] and 𝑇2 [𝜏2] terminate

– hence, 𝜏1 and 𝜏2 terminate

– hence, there exists normal forms 𝑇 ′
1
, 𝑇 ′

2
, 𝜏 ′

1
, 𝜏 ′

2

– hence, 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] ↩→∗ 𝑇 ′
𝑖 [⟨𝜏 ′1, 𝜏 ′2⟩.𝑖]

– at that point, the only possible reduction is 𝑇 ′
𝑖 [⟨𝜏 ′1, 𝜏 ′2⟩.𝑖] ↩→ 𝑇 ′

𝑖 [𝜏 ′𝑖 ]
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– but also, 𝑇𝑖 [𝜏𝑖 ] ↩→∗ 𝑇 ′
𝑖 [𝜏 ′𝑖 ]

– because the former terminates, so does the latter

– hence, 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] also terminates

– by definition of ⟦Ω⟧, 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] ∈ ⟦Ω⟧
• Case 𝜅𝑖1 × 𝜅𝑖2
– by definition of ⟦𝜅𝑖1 × 𝜅𝑖2⟧, 𝑇𝑖 [𝜏𝑖 ] .1 ∈ ⟦𝜅𝑖1⟧ and 𝑇𝑖 [𝜏𝑖 ] .2 ∈ ⟦𝜅𝑖2⟧

– by assumption, 𝑇1−𝑖 [𝜏1−𝑖 ] ∈ ⟦𝜅1−𝑖⟧
– let 𝑇𝑖1 = 𝑇𝑖 .1 and 𝑇𝑖2 = 𝑇𝑖 .2

– by induction (1),𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] .1 = 𝑇𝑖1 [⟨𝜏1, 𝜏2⟩.𝑖] ∈ ⟦𝜅𝑖1⟧ and𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] .2 = 𝑇𝑖2 [⟨𝜏1, 𝜏2⟩.𝑖] ∈
⟦𝜅𝑖2⟧

– by definition of ⟦𝜅𝑖1 × 𝜅𝑖2⟧, 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] ∈ ⟦𝜅𝑖1 × 𝜅𝑖2⟧

• Case 𝜅𝑖1 → 𝜅𝑖2
– assume 𝜏𝑖1 ∈ ⟦𝜅𝑖1⟧

– by definition of ⟦𝜅𝑖1 → 𝜅𝑖2⟧, 𝑇𝑖 [𝜏𝑖 ] 𝜏𝑖1 ∈ ⟦𝜅𝑖1⟧

– by assumption, 𝑇1−𝑖 [𝜏1−𝑖 ] ∈ ⟦𝜅1−𝑖⟧
– let 𝑇 ′

𝑖 = 𝑇𝑖 𝜏𝑖1
– by induction (1), 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] 𝜏𝑖1 = 𝑇 ′

𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] ∈ ⟦𝜅𝑖2⟧

– by definition of ⟦𝜅𝑖1 → 𝜅𝑖2⟧, 𝑇𝑖 [⟨𝜏1, 𝜏2⟩.𝑖] ∈ ⟦𝜅𝑖1 → 𝜅𝑖2⟧

(2) By induction on 𝜅.

• Case Ω
– by definition of ⟦Ω⟧, 𝑇 [𝜏2 [𝜏1/𝛼]] and 𝜏1 terminate

– hence, 𝜏2 [𝜏1/𝛼] terminates

– hence, 𝜏2 terminates

– hence, there exists normal forms 𝑇 ′
, 𝜏 ′

1
, 𝜏 ′

2

– hence, 𝑇 [(𝜆𝛼 :𝜅1.𝜏2) 𝜏1] ↩→∗ 𝑇 ′ [(𝜆𝛼 :𝜅1.𝜏 ′2) 𝜏 ′1]
– at that point, the only possible reduction is 𝑇 ′ [(𝜆𝛼 :𝜅1.𝜏 ′2) 𝜏 ′1] ↩→ 𝑇 ′ [𝜏 ′

2
[𝜏 ′

1
/𝛼]]

– but also, 𝑇 [𝜏2 [𝜏1/𝛼]] ↩→∗ 𝑇 ′ [𝜏 ′
2
[𝜏 ′

1
/𝛼]]

– because the former terminates, so does the latter

– hence, 𝑇 [(𝜆𝛼 :𝜅1.𝜏2) 𝜏1] also terminates

– by definition of ⟦Ω⟧, 𝑇 [(𝜆𝛼 :𝜅1.𝜏2) 𝜏1] ∈ ⟦Ω⟧
• Case 𝜅𝑖1 × 𝜅𝑖2
– analogous to (1)

• Case 𝜅𝑖1 → 𝜅𝑖2
– analogous to (1) □

Lemma A.30 (Completeness wrt. Kinding (“Fundamental Property”)).

If Γ ⊢′ 𝜏 : 𝜅 and 𝛾 ∈ ⟦Γ⟧, then 𝛾 (𝜏) ∈ ⟦𝜅⟧.

Proof. By induction on the derivation.

• Case Γ ⊢′ 𝛼 : 𝜅

– by inversion, Γ ⊢′ Γ(𝛼) : 𝜅
– by definition of ⟦Γ⟧, 𝛾 (𝛼) ∈ ⟦𝜅⟧

• Case Γ ⊢′ ⊤ : Ω
– immediate by definition of ⟦Ω⟧

• Case Γ ⊢′ 𝜏1 × 𝜏2 : Ω
– by inversion, Γ ⊢′ 𝜏1 : Ω and Γ ⊢′ 𝜏2 : Ω
– by induction, 𝛾 (𝜏1) ∈ ⟦Ω⟧ and 𝛾 (𝜏2) ∈ ⟦Ω⟧
– by definition of ⟦Ω⟧, 𝛾 (𝜏1) and 𝛾 (𝜏2) terminate
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– hence 𝛾 (𝜏1) × 𝛾 (𝜏2) terminates

– by definition of ⟦Ω⟧, 𝛾 (𝜏1 × 𝜏2) = 𝛾 (𝜏1) × 𝛾 (𝜏2) ∈ ⟦Ω⟧
• Case Γ ⊢′ 𝜏1 → 𝜏2 : Ω
– analogous

• Case Γ ⊢′ ∀𝛼≤𝜏1.𝜏2 : Ω (assuming 𝛼 is fresh)

– by inversion, Γ ⊢′ 𝜏1 : 𝜅1 and Γ, 𝛼≤𝜏1 ⊢′ 𝜏2 : Ω
– by induction, 𝛾 (𝜏1) ∈ ⟦𝜅1⟧

– let Γ′ = Γ, 𝛼≤𝜏1
– let 𝛾 ′ = 𝛾 ◦ [𝛼/𝛼]
– by Neutral Types, 𝛼 ∈ ⟦𝜅1⟧

– by definition of ⟦Γ′⟧, 𝛾 ′ ∈ ⟦Γ′⟧
– by induction, 𝛾 (𝜏2) = 𝛾 ′ (𝜏2) ∈ ⟦Ω⟧
– by Main Lemma, 𝛾 (𝜏1) and 𝛾 (𝜏2) terminate

– hence ∀𝛼≤𝛾 (𝜏1).𝛾 (𝜏2) terminates

– by definition of ⟦Ω⟧, 𝛾 (∀𝛼≤𝜏1.𝜏2) = ∀𝛼≤𝛾 (𝜏1).𝛾 (𝜏2) ∈ ⟦Ω⟧
• Case Γ ⊢′ 𝜇𝛼≤𝜏1.𝜏2 : 𝜅 (assuming 𝛼 is fresh)

– by inversion, Γ ⊢′ 𝜏1 : 𝜅 and Γ, 𝛼≤𝜏1 ⊢′ 𝜏2 : 𝜅
– by induction, 𝛾 (𝜏1) ∈ ⟦𝜅⟧

– let Γ′ = Γ, 𝛼≤𝜏1
– let 𝛾 ′ = 𝛾 ◦ [𝛼/𝛼]
– by Neutral Types, 𝛼 ∈ ⟦𝜅⟧

– by definition of ⟦Γ′⟧, 𝛾 ′ ∈ ⟦Γ′⟧
– by induction, 𝛾 (𝜏2) = 𝛾 ′ (𝜏2) ∈ ⟦𝜅⟧

– by Main Lemma, 𝛾 (𝜏1) and 𝛾 (𝜏2) terminate

– hence, 𝜇𝛼≤𝛾 (𝜏1).𝛾 (𝜏2) terminates

– by Neutral Types, 𝛾 (𝜇𝛼≤𝜏1 .𝜏2) = 𝜇𝛼≤𝛾 (𝜏1).𝛾 (𝜏2) ∈ ⟦𝜅⟧

• Case Γ ⊢′ ⟨𝜏1, 𝜏2⟩ : 𝜅1 × 𝜅2
– by inversion, Γ ⊢′ 𝜏1 : 𝜅1 and Γ ⊢′ 𝜏2 : 𝜅2
– by induction, 𝛾 (𝜏1) ∈ ⟦𝜅1⟧ and 𝛾 (𝜏2) ∈ ⟦𝜅2⟧

– by reduction, ⟨𝛾 (𝜏1), 𝛾 (𝜏2)⟩.1 ↩→ 𝛾 (𝜏1) and ⟨𝛾 (𝜏1), 𝛾 (𝜏2)⟩.2 ↩→ 𝛾 (𝜏2)
– by Closure under Expansion, ⟨𝛾 (𝜏1), 𝛾 (𝜏2)⟩.𝑖 ∈ ⟦𝜅𝑖⟧

– by definition of ⟦𝜅1 × 𝜅2⟧, 𝛾 (⟨𝜏1, 𝜏2⟩) = ⟨𝛾 (𝜏1), 𝛾 (𝜏2)⟩ ∈ ⟦𝜅1 × 𝜅2⟧

• Case Γ ⊢′ 𝜏 .𝑖 : 𝜅𝑖
– by inversion, Γ ⊢′ 𝜏 : 𝜅1 × 𝜅2
– by induction, 𝛾 (𝜏) ∈ ⟦𝜅1 × 𝜅2⟧

– by definition of ⟦𝜅1 × 𝜅2⟧, 𝛾 (𝜏 .𝑖) = 𝛾 (𝜏).𝑖 ∈ ⟦𝜅𝑖⟧

• Case Γ ⊢′ 𝜆𝛼 :𝜅1 .𝜏2 : 𝜅1 → 𝜅2 (assuming 𝛼 is fresh)

– by inversion, Γ, 𝛼≤⊤𝜅1 ⊢′ 𝜏2 : 𝜅2
– assume 𝜏1 ∈ ⟦𝜅1⟧

– let Γ′ = Γ, 𝛼≤⊤𝜅1
– let 𝛾 ′ = 𝛾 ◦ [𝜏1/𝛼]
– by Kinding of Higher-order Top, Γ′ ⊢′ ⊤𝜅1 : 𝜅1
– by definition of ⟦Γ′⟧, 𝛾 ′ ∈ ⟦Γ′⟧
– by induction, 𝛾 (𝜏2) [𝜏1/𝛼] = 𝛾 ′ (𝜏2) ∈ ⟦𝜅2⟧

– by reduction, (𝜆𝛼 :𝜅1.𝛾 (𝜏2)) 𝜏1 ↩→ 𝛾 (𝜏2) [𝜏1/𝛼]
– by Closure under Expansion, 𝛾 (𝜆𝛼 :𝜅1.𝜏2) 𝜏1 = (𝜆𝛼 :𝜅1.𝛾 (𝜏2)) 𝜏1 ∈ ⟦𝜅2⟧

– by definition of ⟦𝜅1 → 𝜅2⟧, 𝛾 (𝜆𝛼 :𝜅1.𝜏2) ∈ ⟦𝜅1 → 𝜅2⟧

• Case Γ ⊢′ 𝜏1 𝜏2 : 𝜅
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– by inversion, Γ ⊢′ 𝜏1 : 𝜅2 → 𝜅 and Γ ⊢′ 𝜏2 : 𝜅2
– by induction, 𝛾 (𝜏1) ∈ ⟦𝜅2 → 𝜅⟧ and 𝛾 (𝜏2) ∈ ⟦𝜅2⟧

– by definition of ⟦𝜅2 → 𝜅⟧, 𝛾 (𝜏1 𝜏2) = 𝛾 (𝜏1) 𝛾 (𝜏2) ∈ ⟦𝜅⟧
□

Theorem A.31 (Strong Normalisation of Types).

(1) If Γ ⊢′ 𝜏 : 𝜅, then 𝜏 ↩→∗ 𝜏 ′ such that 𝜏 ′ normal.

(2) If Γ ⊢ 𝜏 : 𝜅, then 𝜏 ↩→∗ 𝜏 ′ such that 𝜏 ′ normal.

Proof.

(1) By the Main Lemma and the Fundamental Property with the identity substitution as 𝛾 , which

is in ⟦Γ⟧ due to Lemma A.26.

(2) Follows directly from (1) and Lemma A.12. □

This result justifies a syntactic shorthand for denoting the unique normal form of types and

environments.

Definition A.8 (Normal Form).

𝜏↓ = 𝜏 ′ for which 𝜏 ↩→∗ 𝜏 ′ ∧ 𝜏 ′ normal

Γ↓ = Γ′ for which dom(Γ′) = dom(Γ) ∧ ∀𝛼/𝑥 ∈ dom(Γ) . Γ′ (𝛼/𝑥) = Γ(𝛼/𝑥)↓

A.6 Normal Subtyping
Having proved decidability of type equivalence via string normalisation in the previous section,

we now turn to subtyping. We follow Compagnoni [?], Sections 6–9, by first defining an equivalent

normal subtype relation that only considers types in normal form, for which it is easier to prove

cut elimination. That is, derivations can be simplified by eliminating the use of transitivity and

restricting reflexivity to syntactic equality. From this, an algorithmic formulation of subtyping can

then be derived.

First, we define the notion of promotion [Pierce and Steffen 1997], which generalises a neutral

type to its least supertype.
11

Definition A.9 (Promotion).

promoteΓ (𝛼) = Γ(𝛼)
promoteΓ (𝜇𝛼≤𝜏1.𝜏2) = 𝜏1

Promotion is a partial function, only defined on variables and 𝜇-types, i.e., the roots of neutral

types. When applied to neutral types, it preserves kinding and produces a supertype (Lemma A.32).

With that, we can define a variant of the subtyping relation that operates on normal types only.

Definition A.10 (Normal Subtyping). The relation Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ is the same as Γ ⊢ 𝜏 ≤ 𝜏 ′, but
where (1) all types in the derivation are restricted to normal and (2) with the following replacement

rules for reflexivity and universal types, and a single rule for applying promotion to neutral types

replacing the rules for variables, 𝜇-types, application, and projection:

Γ ⊢𝑛 𝜏 ≤ 𝜏
NS-Refl

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏 ′
2

NS-All

Γ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′

Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝜏 ′
NS-Neutr

11
Compagnoni called it lub instead.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 234. Publication date: October 2023.



234:36 Andreas Rossberg

Unlike in Compagnoni’s definition, we integrate the rule for variables (and projection) into a single

rule for neutral types, which reduces some repetition in the proofs, especially with the addition of

projections.

Promotion maintains the following propoerties.

Lemma A.32 (Properties of Promotion). If promoteΓ (𝜏) is defined, then:
(1) If Γ ⊢ 𝑇 [𝜏] : 𝜅, then Γ ⊢ 𝑇 [promoteΓ (𝜏)] : 𝜅.
(2) Γ ⊢ 𝑇 [𝜏] ≤ 𝑇 [promoteΓ (𝜏)].
(3) Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝑇 [promoteΓ (𝜏)]↓.

Proof. Each by induction on the structure of 𝑇 [𝜏]. □

A.7 Cut Elimination for Normal Subtyping
Normal subtyping has a general reflexivity rule NS-Refl, but it is possible to eliminate most of its

uses with the following rewrite steps on derivations.

Definition A.11 (Reflexivity Elimination).

Γ ⊢𝑛 𝜏1 × 𝜏2 ≤ 𝜏1 × 𝜏2
NS-Refl =⇒ Γ ⊢𝑛 𝜏1 ≤ 𝜏1

NS-Refl

Γ ⊢𝑛 𝜏2 ≤ 𝜏2
NS-Refl

Γ ⊢𝑛 𝜏1 × 𝜏2 ≤ 𝜏1 × 𝜏2
NS-Tim

Γ ⊢𝑛 𝜏1 → 𝜏2 ≤ 𝜏1 → 𝜏2
NS-Refl =⇒ Γ ⊢𝑛 𝜏1 ≤ 𝜏1

NS-Refl

Γ ⊢𝑛 𝜏2 ≤ 𝜏2
NS-Refl

Γ ⊢𝑛 𝜏1 → 𝜏2 ≤ 𝜏1 → 𝜏2
NS-Arr

Γ ⊢𝑛 ∀𝛼≤𝜏1 .𝜏2 ≤ ∀𝛼≤𝜏1 .𝜏2
NS-Refl =⇒ Γ ⊢𝑛 𝜏1 ≤ 𝜏1

NS-Refl

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏2 ≤ 𝜏2
NS-Refl

Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏2
NS-All

Γ ⊢𝑛 ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏1, 𝜏2⟩
NS-Refl =⇒ Γ ⊢𝑛 𝜏1 ≤ 𝜏1

NS-Refl

Γ ⊢𝑛 𝜏2 ≤ 𝜏2
NS-Refl

Γ ⊢𝑛 ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏1, 𝜏2⟩
NS-Tup

Γ ⊢𝑛 𝜆𝛼 :𝜅1.𝜏2 ≤ 𝜆𝛼 :𝜅1.𝜏2
NS-Refl =⇒ Γ, 𝛼≤⊤𝜅 ⊢𝑛 𝜏2 ≤ 𝜏2

NS-Refl

Γ ⊢𝑛 𝜆𝛼 :𝜅1.𝜏2 ≤ 𝜆𝛼 :𝜅1.𝜏2
NS-Lam

Similarly, uses of transitivity can be eliminated by rewriting derivations according to the following

set of rules.

Definition A.12 (Transitivity Elimination).

Γ ⊢𝑛 𝜏 ≤ 𝜏
NS-Refl

...

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′
NS-Trans =⇒

...

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′

...

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ Γ ⊢𝑛 𝜏 ′ ≤ 𝜏
NS-Refl

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′
NS-Trans =⇒

...

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′
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...

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ Γ ⊢𝑛 𝜏 ′ ≤ ⊤NS-Top

Γ ⊢𝑛 𝜏 ≤ ⊤ NS-Trans =⇒
Γ ⊢𝑛 𝜏 ≤ ⊤NS-Top

Γ ⊢𝑛 Γ(𝛼) ≤ 𝜏 ′

Γ ⊢𝑛 𝛼 ≤ 𝜏 ′
NS-Var

...

Γ ⊢𝑛 𝜏 ′ ≤ 𝜏 ′′

Γ ⊢𝑛 𝛼 ≤ 𝜏 ′′
NS-Trans =⇒

Γ ⊢𝑛 Γ(𝛼) ≤ 𝜏 ′ Γ ⊢𝑛 𝜏 ′ ≤ 𝜏 ′′

Γ ⊢𝑛 Γ(𝛼) ≤ 𝜏 ′′
NS-Trans

Γ ⊢𝑛 𝛼 ≤ 𝜏 ′′
NS-Var

Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′
1

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 𝜏1 × 𝜏2 ≤ 𝜏 ′
1
× 𝜏 ′

2

NS-Tim

Γ ⊢𝑛 𝜏 ′
1
≤ 𝜏 ′′

1
Γ ⊢𝑛 𝜏 ′

2
≤ 𝜏 ′′

2

Γ ⊢𝑛 𝜏 ′
1
× 𝜏 ′

2
≤ 𝜏 ′′

1
× 𝜏 ′′

2

NS-Tim

Γ ⊢𝑛 𝜏1 × 𝜏2 ≤ 𝜏 ′′
1
× 𝜏 ′′

2

NS-Trans

=⇒

Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′
1

Γ ⊢𝑛 𝜏 ′
1
≤ 𝜏 ′′

1

Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′′
1

NS-Trans

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′′
2

NS-Trans

Γ ⊢𝑛 𝜏1 × 𝜏2 ≤ 𝜏 ′′
1
× 𝜏 ′′

2

NS-Tim

Γ ⊢𝑛 𝜏 ′
1
≤ 𝜏1 Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′

2

Γ ⊢𝑛 𝜏1 → 𝜏2 ≤ 𝜏 ′
1
→ 𝜏 ′

2

NS-Arr

Γ ⊢𝑛 𝜏 ′′
1
≤ 𝜏 ′

1
Γ ⊢𝑛 𝜏 ′

2
≤ 𝜏 ′′

2

Γ ⊢𝑛 𝜏 ′
1
→ 𝜏 ′

2
≤ 𝜏 ′′

1
→ 𝜏 ′′

2

NS-Arr

Γ ⊢𝑛 𝜏1 → 𝜏2 ≤ 𝜏 ′′
1
→ 𝜏 ′′

2

NS-Trans

=⇒

Γ ⊢𝑛 𝜏 ′′
1
≤ 𝜏 ′

1
Γ ⊢𝑛 𝜏 ′

1
≤ 𝜏1

Γ ⊢𝑛 𝜏 ′′
1
≤ 𝜏1

NS-Trans

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′′
2

NS-Trans

Γ ⊢𝑛 𝜏1 → 𝜏2 ≤ 𝜏 ′′
1
→ 𝜏 ′′

2

NS-Arr

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏 ′
2

NS-All

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏 ′
2
≤ ∀𝛼≤𝜏1.𝜏 ′′

2

NS-All

Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏 ′′
2

NS-Trans

=⇒

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

NS-Trans

Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏 ′′
2

NS-All

Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′
1

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩ NS-Tup

Γ ⊢𝑛 𝜏 ′
1
≤ 𝜏 ′′

1
Γ ⊢𝑛 𝜏 ′

2
≤ 𝜏 ′′

2

Γ ⊢𝑛 ⟨𝜏 ′
1
, 𝜏 ′

2
⟩ ≤ ⟨𝜏 ′′

1
, 𝜏 ′′

2
⟩ NS-Tup

Γ ⊢𝑛 ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏 ′′
1
, 𝜏 ′′

2
⟩ NS-Trans

=⇒

Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′
1

Γ ⊢𝑛 𝜏 ′
1
≤ 𝜏 ′′

1

Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′′
1

NS-Trans

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′′
2

NS-Trans

Γ ⊢𝑛 ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏 ′′
1
, 𝜏 ′′

2
⟩ NS-Tup

Γ, 𝛼≤⊤𝜅1 ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ ⊢𝑛 𝜆𝛼 :𝜅1.𝜏2 ≤ 𝜆𝛼 :𝜅1.𝜏
′
2

NS-Lam

Γ, 𝛼≤⊤𝜅1 ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ ⊢𝑛 𝜆𝛼 :𝜅1 .𝜏
′
2
≤ 𝜆𝛼 :𝜅1.𝜏

′′
2

NS-Lam

Γ ⊢𝑛 𝜆𝛼 :𝜅1.𝜏2 ≤ 𝜆𝛼 :𝜅1.𝜏
′′
2

NS-Trans

=⇒

Γ, 𝛼≤⊤𝜅1 ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

Γ, 𝛼≤⊤𝜅1 ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

Γ, 𝛼≤⊤𝜅1 ⊢𝑛 𝜏 ′
2
≤ 𝜏 ′′

2

NS-Trans

Γ ⊢𝑛 𝜆𝛼 :𝜅1 .𝜏2 ≤ 𝜆𝛼 :𝜅1.𝜏
′′
2

NS-Lam
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Γ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′

Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝜏 ′
NS-Neutr

...

Γ ⊢𝑛 𝜏 ′ ≤ 𝜏 ′′

Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝜏 ′′
NS-Trans

=⇒

Γ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′ Γ ⊢𝑛 𝜏 ′ ≤ 𝜏 ′′

Γ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′′
NS-Trans

Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝜏 ′′
NS-Neutr

Having defined these rules, we can further define the notion of derivations that are normalised

according to the rewrite rules.

Definition A.13 (Normalised Derivation).

(1) A derivation is reflexivity-normalised if no Reflexivity Elimination rule is applicable.

(2) A derivation is transitivity-normalised if no Transitivity Elimination rule is applicable.

(3) A derivation is normalised if it is both reflexivity-normalised and transitivity-normalised.

Iterative application of the rewrite rules indeed terminates.

Lemma A.33 (Termination of Reflexivity and Transitivity Elimination).

(1) A normal subtyping derivation with only one application of rule NS-Refl has a reflexivity-

normalised form.

(2) A normal subtyping derivation with only one application of rule NS-Trans has a transitivity-

normalised form.

Proof.

(1) By induction on the size of the types. Each rewrite rule produces uses of NS-Refl on strictly

smaller terms.

(2) By induction on the size of the derivation. Each rewrite rule either eliminates the use of

NS-Trans or produces uses with strictly smaller derivations as premises. □

Corollary A.34 (Existence of Normalised Derivations). If there exists a derivation for

Γ ⊢𝑛 𝜏 ≤ 𝜏 ′, then there also exists a normalised derivation for it.

Finally, by iteratively eliminating reflexivity and transitivity from subderivations, we can construct

cut-free derivations.

Lemma A.35 (Last Rule of Normalised Derivations).

(1) A normalised derivation whose last rule is NS-Refl is a proof for a neutral type.

(2) A normalised derivation does not have NS-Trans as its last rule.

Proof.

(1) By inspection of the rules for Reflexivity Elimination, any other case constitutes a redex.

(2) By induction on the size of the derivation. Each rewrite rule either eliminates the use of

NS-Trans or produces uses with strictly smaller derivations as premises. □

Corollary A.36 (Cut-Free Derivations). If there exists a derivation for Γ ⊢𝑛 𝜏 ≤ 𝜏 ′, then there

also exists a derivation for it with no application of NS-Trans and in which NS-Refl is only applied to

neutral types.

A.8 Equivalence of Normal Subtyping
We are now in shape to prove that normal subtyping is in fact equivalent to ordinary subtyping for

normal types. We had to defer that proof, because proving the completeness direction depends on

the existence of cut-free derivations.
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We start with soundness.

Proposition A.37 (Soundness of Normal Subtyping). If Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅′ and
Γ ⊢𝑛 𝜏 ≤ 𝜏 ′, then Γ ⊢ 𝜏 ≤ 𝜏 ′.

Proof. By induction on the derivation of ⊢𝑛 . The only interesting cases are the new rules:

• Case Γ ⊢𝑛 𝜏 ≤ 𝜏

– by reflexivity of ≡, 𝜏 ≡ 𝜏

– by the reflexivity rule, Γ ⊢ 𝜏 ≤ 𝜏

• Case Γ ⊢𝑛 ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏 ′2
– by inversion, Γ, 𝛼≤𝜏1 ⊢𝑛 𝜏2 ≤ 𝜏 ′

2

– by reflexivity of ≡, 𝜏1 ≡ 𝜏1
– by the original rule for ∀, Γ ⊢ ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏1.𝜏 ′2

• Case Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝜏 ′

– by inversion, Γ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′

– by Lemma A.32 (1), Γ ⊢ 𝑇 [promoteΓ (𝜏)] : 𝜅
– by Preservation of Kinding, Γ ⊢ 𝑇 [promoteΓ (𝜏)]↓ : 𝜅
– by Lemma A.32 (2), Γ ⊢ 𝑇 [𝜏] ≤ 𝑇 [promoteΓ (𝜏)]
– by the definition of ≡, 𝑇 [promoteΓ (𝜏)] ≡ 𝑇 [promoteΓ (𝜏)]↓
– by the reflexivity rule, Γ ⊢ 𝑇 [promoteΓ (𝜏)] ≤ 𝑇 [promoteΓ (𝜏)]↓
– by the transitivity rule, Γ ⊢ 𝑇 [𝜏] ≤ 𝑇 [promoteΓ (𝜏)]↓
– by induction, Γ ⊢ 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′

– by the transitivity rule, Γ ⊢ 𝑇 [𝜏] ≤ 𝜏 ′ □

To prove completeness of normal subtyping, we first need to show that ordinary subtyping can

be limited to normal types as well.

Lemma A.38 (Completeness of Normal Environments).

(1) If ⊢ Γ ok, then ⊢ Γ↓ ok.
(2) If Γ ⊢ 𝜏 : 𝜅, then Γ↓ ⊢ 𝜏 : 𝜅.

(3) If Γ ⊢ 𝜏 ≤ 𝜏 ′, then Γ↓ ⊢ 𝜏 ≤ 𝜏 ′.

Proof. By simultaneous induction on derivations. □

Lemma A.39 (Soundness of Normal Environments). If ⊢ Γ1, Γ2 ok, then:

(1) If Γ↓
1
, Γ2 ⊢ 𝜏 : 𝜅, then Γ1, Γ2 ⊢ 𝜏 : 𝜅.

(2) If Γ↓
1
, Γ2 ⊢ 𝜏 ≤ 𝜏 ′, then Γ1, Γ2 ⊢ 𝜏 ≤ 𝜏 ′.

Proof. By simultaneous induction on derivations. □

Lemma A.40 (Eqivalence of Normal Environments). Let Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅. Then
Γ ⊢ 𝜏 ≤ 𝜏 ′ if and only if Γ↓ ⊢ 𝜏↓ ≤ 𝜏 ′↓.

Proof. Follows from Soundness and Completeness of Normal Environments and Preservation

of Kinding. □

Lemma A.41 (Normal Subtyping of Higher-Order Top). If Γ ⊢ 𝜏 : 𝜅, then Γ ⊢ 𝜏 ≤ ⊤𝜅 .

Proof. By induction on the derivation. □

Lemma A.42 (Kinding under Elimination Contexts). Let Γ ⊢ 𝑇 [𝜏] : 𝜅. Then:
(1) If 𝜏 = ⟨𝜏1, 𝜏2⟩, then 𝑇 = 𝑇 ′ [_.𝑖].
(2) If 𝜏 = 𝜆𝛼 :𝜅1 .𝜏2, then 𝑇 = 𝑇 ′ [_ 𝜏1].
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Proof. Each by induction on the derivation. □

Lemma A.43 (Kind Preservation for Normal Subtyping). If Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ and Γ ⊢ 𝜏 : 𝜅 and

Γ ⊢ 𝜏 ′ : 𝜅′, then 𝜅 = 𝜅′.

Proof. By induction on the derivation of ≤. □

Lemma A.44 (Normal Subtyping Under Type Elimination). Let Γ ⊢𝑛 𝜏 ≤ 𝜏 ′.

(1) If Γ ⊢ 𝜏 : 𝜅1 × 𝜅2 and Γ ⊢ 𝜏 ′ : 𝜅1 × 𝜅2, then Γ ⊢𝑛 (𝜏 .𝑖)↓ ≤ (𝜏 ′ .𝑖)↓.
(2) If Γ ⊢ 𝜏 : 𝜅1 → 𝜅2 and Γ ⊢ 𝜏 ′ : 𝜅1 → 𝜅2 and Γ ⊢ 𝜏1 : 𝜅1, then Γ ⊢𝑛 (𝜏 𝜏1)↓ ≤ (𝜏 ′ 𝜏1)↓.
(3) If Γ ⊢ 𝑇 [𝜏] : 𝜅 and Γ ⊢ 𝑇 [𝜏 ′] : 𝜅, then Γ ⊢𝑛 𝑇 [𝜏]↓ ≤ 𝑇 [𝜏 ′]↓.
Proof.

(1) By induction on the derivation of ≤.
• Case NS-Refl

– immediate

• Case NS-Trans

– by inversion, Γ ⊢𝑛 𝜏 ≤ 𝜏 ′′ and Γ ⊢ 𝜏 ′′ ≤ 𝜏 ′ and Γ ⊢ 𝜏 ′′ : 𝜅′′
– by Kind Preservation for Normal Subtyping, 𝜅′′ = 𝜅1 × 𝜅2
– by induction, Γ ⊢𝑛 (𝜏 .𝑖)↓ ≤ (𝜏 ′′ .𝑖)↓ and Γ ⊢ (𝜏 ′′ .𝑖)↓ ≤ (𝜏 ′ .𝑖)↓
– by kinding rule, Γ ⊢ 𝜏 ′′ .𝑖 : 𝜅𝑖
– by rule NS-Trans, Γ ⊢𝑛 (𝜏 .𝑖)↓ ≤ (𝜏 ′ .𝑖)↓

• Case 𝜏 = ⟨𝜏1, 𝜏2⟩ and 𝜏 ′ = ⟨𝜏 ′
1
, 𝜏 ′

2
⟩ (NS-Tup)

– by inversion, Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′
1
and Γ ⊢𝑛≤ 𝜏2 ≤ 𝜏 ′

2

– by reduction rules, (𝜏 .𝑖)↓ = 𝜏𝑖 and (𝜏 ′ .𝑖)↓ = 𝜏 ′𝑖
• Case 𝜏 = 𝑇 [𝜏1] (NS-Neutr)
– by inversion, Γ ⊢𝑛 𝑇 [promoteΓ (𝜏1)]↓ ≤ 𝜏 ′

– by Properties of Promotion, Γ ⊢𝑛 𝑇 [promoteΓ (𝜏1)] : 𝜅1 × 𝜅2

– by induction, Γ ⊢𝑛 (𝑇 [promoteΓ (𝜏1)] .𝑖)↓ ≤ (𝜏 ′ .𝑖)↓
– by assumption, 𝑇 [𝜏1] normal and neutral

– hence, 𝑇 [𝜏1] .𝑖 normal and 𝑇 [𝜏1] .𝑖 = (𝑇 [𝜏1] .𝑖)↓
– by rule NS-Neutr, Γ ⊢𝑛 (𝑇 [𝜏1] .𝑖)↓ ≤ (𝜏 ′ .𝑖)↓

(2) Analogously.

(3) By induction on the structure of 𝑇 , using parts (1) and (2). □

Lemma A.45 (Substitution for Normal Subtyping). Let Γ = Γ1, 𝛼≤⊤𝜅 , Γ2. If Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ and
Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅 and Γ1 ⊢ 𝜏𝛼 : 𝜅𝛼 , then Γ1, Γ2 [𝜏𝛼/𝛼]↓ ⊢𝑛 𝜏 [𝜏𝛼/𝛼]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓.

Proof. By induction on the derivation of ≤. The interesting case is rule NS-Neutr:

• Case Γ ⊢𝑛 𝑇 [𝜏] ≤ 𝜏 ′ (NS-Neutr)
– let Γ = Γ1, 𝛼≤⊤𝜅𝛼 , Γ2 and Γ′ = Γ1, Γ2 [𝜏𝛼/𝛼]↓
– by inversion, Γ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ ≤ 𝜏 ′

– by induction, Γ′ ⊢𝑛 𝑇 [promoteΓ (𝜏)]↓ [𝜏𝛼/𝛼]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
– let 𝑇 ′ = 𝑇 [𝜏𝛼/𝛼]↓
– by definition of normal form,

𝑇 [promoteΓ (𝜏)]↓ [𝜏𝛼/𝛼]↓ = 𝑇 [promoteΓ (𝜏)] [𝜏𝛼/𝛼]↓ = 𝑇 ′ [promoteΓ (𝜏) [𝜏𝛼/𝛼]]↓
– following from the partial definition of promoteΓ , there are 4 subcases to consider:

∗ subcase 𝜏 = 𝛼

· then promoteΓ (𝛼) = ⊤𝜅𝛼
· by definition, 𝛼 ∉ fv(⊤𝜅𝛼 )
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· hence, Γ′ ⊢𝑛 𝑇 ′ [⊤𝜅𝛼 ]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· by Preservation of Kinding, Γ ⊢ 𝜏↓𝛼 : 𝜅𝛼

· by Normal Subtyping of Higher-Order Top, Γ1 ⊢𝑛 𝜏
↓
𝛼 ≤ ⊤𝜅𝛼

· by Weakening, Γ′ ⊢ 𝜏𝛼 : 𝜅𝛼 and Γ′ ⊢𝑛 𝜏
↓
𝛼 ≤ ⊤𝜅𝛼

· by Properties of Higher-order Top, Γ′ ⊢ ⊤𝜅𝛼 : 𝜅𝛼

· by Normal Subtyping Under Type Elimination, Γ′ ⊢𝑛 𝑇 ′ [𝜏↓𝛼 ]↓ ≤ 𝑇 ′ [⊤𝜅𝛼 ]↓
· by Confluence, 𝑇 ′ [𝜏↓𝛼 ]↓ = 𝑇 ′ [𝜏𝛼 ]↓ = 𝑇 [𝛼] [𝜏𝛼/𝛼]↓
· by transitivity rule, Γ′ ⊢𝑛 𝑇 [𝛼] [𝜏𝛼/𝛼]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓

∗ subcase 𝜏 = 𝛼1 ∈ dom(Γ1) (with 𝛼1 ≠ 𝛼)

· by Free Variables, 𝛼1 ∉ fv(Γ1 (𝛼1))
· hence, Γ′ ⊢𝑛 𝑇 ′ [Γ1 (𝛼1)]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· by Properties of Promotion, Γ′ ⊢𝑛 𝑇 ′ [𝛼1] ≤ 𝑇 ′ [Γ1 (𝛼1)]↓
· by transitivity rule, Γ′ ⊢𝑛 𝑇 ′ [𝛼1] ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· by Confluence, 𝑇 ′ [𝛼1] = 𝑇 [𝛼1] [𝜏𝛼/𝛼]↓

∗ subcase 𝜏 = 𝛼2 ∈ dom(Γ2) (with 𝛼2 ≠ 𝛼)

· let Γ′
2
= Γ2 [𝜏𝛼/𝛼]

· by Properties of Promotion, Γ′ ⊢𝑛 𝑇 ′ [𝛼2] ≤ 𝑇 ′ [Γ′
2
(𝛼2)]↓

· by definition, Γ′
2
(𝛼2) = Γ2 (𝛼2) [𝜏𝛼/𝛼]

· by transitivity rule, Γ′ ⊢𝑛 𝑇 ′ [𝛼2] ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· by Confluence, 𝑇 ′ [𝛼2] = 𝑇 [𝛼2] [𝜏𝛼/𝛼]↓

∗ subcase 𝜏 = 𝜇𝛼1≤𝜏1 .𝜏2
· then promoteΓ (𝜏) = 𝜏1
· by definition, promoteΓ′ (𝜏) = 𝜏1 = promoteΓ (𝜏)
· also by definition, promoteΓ′ (𝜏 [𝜏𝛼/𝛼]) = 𝜏1 [𝜏𝛼/𝛼]
· hence, Γ′ ⊢𝑛 𝑇 ′ [promoteΓ′ (𝜏 [𝜏𝛼/𝛼])]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· by Confluence, 𝑇 ′ [promoteΓ′ (𝜏 [𝜏𝛼/𝛼])↓]↓
· because 𝜏 is a 𝜇-type, promoteΓ′ (𝜏 [𝜏𝛼/𝛼])↓ = promoteΓ′ (𝜏 [𝜏𝛼/𝛼]↓)
· hence, Γ′ ⊢𝑛 𝑇 ′ [promoteΓ′ (𝜏 [𝜏𝛼/𝛼]↓)]↓ ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· because 𝜏 is a 𝜇-type, 𝑇 ′ [𝜏 [𝜏𝛼/𝛼]↓] is normal

· by rule NS-Neutr, Γ′ ⊢𝑛 𝑇 ′ [𝜏 [𝜏𝛼/𝛼]↓] ≤ 𝜏 ′ [𝜏𝛼/𝛼]↓
· by definition, 𝑇 ′ [𝜏 [𝜏𝛼/𝛼]↓] = 𝑇 [𝜏] [𝜏𝛼/𝛼]↓ □

Lemma A.46 (Normal Subtyping under Elimination). If Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ and Γ ⊢ 𝑇 [𝜏] : 𝜅 and

Γ ⊢ 𝑇 [𝜏 ′] : 𝜅′, then Γ ⊢𝑛 𝑇 [𝜏]↓ ≤ 𝑇 [𝜏 ′]↓.
Proof. By induction on the normalised derivation of ≤. Interesting cases are:

• Case NS-Refl, Γ ⊢𝑛 𝜏 ≤ 𝜏 with 𝜏 ′ = 𝜏

– then 𝑇 [𝜏] = 𝑇 [𝜏 ′]
– hence, 𝑇 [𝜏]↓ = 𝑇 [𝜏 ′]↓
– by NS-Refl, Γ ⊢𝑛 𝑇 [𝜏]↓ ≤ 𝑇 [𝜏 ′]↓

• Case NS-Neutr, Γ ⊢𝑛 𝑇 ′ [𝜏] ≤ 𝜏 ′

– by inversion, Γ ⊢𝑛 𝑇 ′ [promoteΓ (𝜏)]↓ ≤ 𝜏 ′

– by Properties of Promotion, Γ𝑇 ′ [promoteΓ (𝜏)] : 𝜅
– by Preservation of Kinding, Γ𝑇 ′ [promoteΓ (𝜏)]↓ : 𝜅
– by induction, Γ ⊢𝑛 𝑇 [𝑇 ′ [promoteΓ (𝜏)]↓]↓ ≤ 𝑇 [𝜏 ′]↓
– by Uniqueness of Normal Forms, 𝑇 [𝑇 ′ [promoteΓ (𝜏)]↓]↓ = 𝑇 [𝑇 ′ [promoteΓ (𝜏)]]↓
– let 𝑇 ′′ = 𝑇 [𝑇 ′]
– by NS-Neutr, Γ ⊢𝑛 𝑇 [𝑇 ′ [𝜏]]↓ ≤ 𝑇 [𝜏 ′]↓
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• Case Γ ⊢𝑛 ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩

– by inversion, Γ ⊢𝑛 𝜏1 ≤ 𝜏 ′
1
and Γ ⊢𝑛 𝜏2 ≤ 𝜏 ′

2

– by Kinding under Elimination Contexts, 𝑇 = 𝑇 ′ [_.𝑖]
– then 𝑇 [⟨𝜏1, 𝜏2⟩]↓ = 𝑇 ′ [𝜏𝑖 ]↓ and 𝑇 [⟨𝜏 ′1, 𝜏 ′2⟩]↓ = 𝑇 ′ [𝜏 ′𝑖 ]↓
– by inversion of kinding, Γ ⊢ 𝜏𝑖 : 𝜅𝑖 and Γ ⊢ 𝜏 ′𝑖 : 𝜅′𝑖
– by induction, Γ ⊢𝑛 𝑇 ′ [𝜏𝑖 ]↓ ≤ 𝑇 ′ [𝜏 ′𝑖 ]↓

• Case Γ ⊢𝑛 𝜆𝛼 :𝜅1 .𝜏2 ≤ 𝜆𝛼 :𝜅1.𝜏
′
2

– by inversion, Γ, 𝛼≤⊤𝜅1 ⊢𝑛 𝜏2 ≤ 𝜏 ′
2

– by Kinding under Elimination Contexts, 𝑇 = 𝑇 ′ [_ 𝜏1]
– then 𝑇 [𝜆𝛼 :𝜅1.𝜏2]↓ = 𝑇 ′ [𝜏2 [𝜏1/𝛼]]↓ and 𝑇 [𝜆𝛼 :𝜅1.𝜏2]↓ = 𝑇 ′ [𝜏 ′

2
[𝜏1/𝛼]]↓

– by inversion of kinding, Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏2 : 𝜅2 and Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏 ′2 : 𝜅′2
– by induction, Γ ⊢𝑛 𝑇 ′ [𝜏𝑖 ]↓ ≤ 𝑇 ′ [𝜏 ′𝑖 ]↓ □

Proposition A.47 (Completeness of Normal Subtyping). If Γ ⊢ 𝜏 ≤ 𝜏 ′, then Γ↓ ⊢𝑛 𝜏↓ ≤ 𝜏 ′↓.

Proof. By induction on the derivation. The only interesting cases are the eliminated rules:

• Case Γ ⊢ 𝜏 ≤ 𝜏 ′ where 𝜏 ≡ 𝜏 ′

– by Strong Normalisation, 𝜏↓ = 𝜏 ′↓

– by rule NS-Refl, Γ↓ ⊢𝑛 𝜏↓ ≤ 𝜏 ′↓

• Case Γ ⊢ ∀𝛼≤𝜏1.𝜏2 ≤ ∀𝛼≤𝜏 ′
1
.𝜏 ′
2

– by inversion, 𝜏1 ≡ 𝜏 ′
1
and Γ, 𝛼≤𝜏1 ⊢ 𝜏2 ≤ 𝜏 ′

2

– by Strong Normalisation, 𝜏
↓
1
= 𝜏 ′

1

↓

– by induction, Γ↓, 𝛼≤𝜏↓
1
⊢𝑛 𝜏

↓
2
≤ 𝜏 ′

2

↓

– by rule NS-All, Γ ⊢𝑛 (∀𝛼≤𝜏1.𝜏2)↓ ≤ (∀𝛼≤𝜏1.𝜏 ′2)↓
• Case Γ ⊢ 𝛼 ≤ Γ(𝛼)
– by definition, promoteΓ↓ (𝛼) = Γ↓ (𝛼)
– by definition of normal form, 𝛼↓ = 𝛼

– by definition, Γ↓ (𝛼) = Γ(𝛼)↓
– by rule NS-Refl, Γ↓ ⊢𝑛 Γ(𝛼)↓ ≤ Γ(𝛼)↓
– let 𝑇 = _

– by definition of normal form, Γ↓ (𝛼)↓ = (Γ(𝛼)↓)↓ = Γ(𝛼)↓
– by rule NS-Neutr, Γ↓ ⊢𝑛 𝛼↓ ≤ Γ(𝛼)↓

• Case Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 ≤ 𝜏1

– by definition, promoteΓ↓ ((𝜇𝛼≤𝜏1 .𝜏2)↓) = 𝜏
↓
1

– by rule NS-Refl, Γ↓ ⊢𝑛 𝜏
↓
1
≤ 𝜏

↓
1

– let 𝑇 = _

– by rule NS-Neutr, Γ↓ ⊢𝑛 (𝜇𝛼≤𝜏1 .𝜏2)↓ ≤ 𝜏
↓
1

• Case Γ ⊢ 𝜏 .𝑖 ≤ 𝜏 ′ .𝑖
– by inversion, Γ ⊢ 𝜏 ≤ 𝜏 ′

– by induction, Γ ⊢𝑛 𝜏↓ ≤ 𝜏 ′↓

– by Normal Subtyping under Elimination, Γ ⊢𝑛 (𝜏↓ .𝑖)↓ ≤ (𝜏 ′↓ .𝑖)↓
– by Confluence, (𝜏↓ .𝑖)↓ = (𝜏 .𝑖)↓ and (𝜏 ′↓ .𝑖)↓ = (𝜏 ′ .𝑖)↓

• Case Γ ⊢ 𝜏 𝜏1 ≤ 𝜏 ′ 𝜏1
– by inversion, Γ ⊢ 𝜏 ≤ 𝜏 ′

– by induction, Γ ⊢𝑛 𝜏↓ ≤ 𝜏 ′↓

– by Normal Subtyping under Elimination, Γ ⊢𝑛 (𝜏↓ 𝜏1)↓ ≤ (𝜏 ′↓ 𝜏1)↓
– by Confluence, (𝜏↓ 𝜏1)↓ = (𝜏 𝜏1)↓ and (𝜏 ′↓ 𝜏1)↓ = (𝜏 ′ 𝜏1)↓
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□

Theorem A.48 (Eqivalence of Normal Subtyping). Let Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅. Then

Γ ⊢ 𝜏 ≤ 𝜏 ′ if and only if Γ↓ ⊢𝑛 𝜏↓ ≤ 𝜏 ′↓.

Proof. Follows from Soundness and Completeness of Normal Subtyping and Lemma A.40. □
Corollary A.49 (Reflexivity and Transitivity of Normal Subtyping).

(1) If Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅 and 𝜏 ≡ 𝜏 ′, then Γ ⊢𝑛 𝜏 ≤ 𝜏 ′.
(2) If Γ ⊢𝑛 𝜏 ≤ 𝜏 ′ : 𝜅 and Γ ⊢𝑛 𝜏 ′ ≤ 𝜏 ′′ : 𝜅, then Γ ⊢𝑛 𝜏 ≤ 𝜏 ′′.

Proof. By converting to the respective ordinary subtyping derivation, applying reflexivity or

transitivity rules, and converting back. □

A.9 Algorithmic Subtyping
If we only consider cut-free derivations of normal subtyping, then all rules are syntax-directed. We

can hence interpret the normal subtyping relation under such a restricted rule set as an algorithm.
12

Definition A.14 (Algorithmic Subtyping). The relation Γ ⊢𝑎 𝜏 ≤ 𝜏 ′ is the same as Γ ⊢𝑛 𝜏 ≤ 𝜏 ′,
but with the transitivity rule removed.

Theorem A.50 (Eqivalence of Algorithmic Subtyping). Let Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅. Then:
(1) Γ ⊢𝑎 𝜏 ≤ 𝜏 ′ if and only if Γ ⊢𝑛 𝜏 ≤ 𝜏 ′.
(2) Γ↓ ⊢𝑎 𝜏↓ ≤ 𝜏 ′↓ if and only if Γ ⊢ 𝜏 ≤ 𝜏 ′.
Proof.

(1) One direction follows from Cut-Free Derivations, the other is immediate from the definition.

(2) By part (1) and Equivalence of Normal Subtyping. □

It is not difficult to see that the resulting rule set corresponds directly to the functional presentation

given in Figure 3.

Corollary A.51 (Reflexivity and Transitivity of Algorithmic Subtyping).

(1) If Γ↓ ⊢ 𝜏↓ : 𝜅 and Γ↓ ⊢ 𝜏 ′↓ : 𝜅 and 𝜏↓ ≡ 𝜏 ′↓, then Γ↓ ⊢𝑎 𝜏↓ ≤ 𝜏 ′↓.
(2) If Γ↓ ⊢𝑎 𝜏↓ ≤ 𝜏 ′↓ : 𝜅 and Γ↓ ⊢𝑎 𝜏 ′↓ ≤ 𝜏 ′′↓ : 𝜅, then Γ↓ ⊢𝑎 𝜏↓ ≤ 𝜏 ′′↓.

Proof. Follows from the definition and Reflexivity and Transitivity of Normal Subtyping. □

A.10 Unrolling
To prove type soundness, we need a few properties of higher-order unrolling. In particular, the key

characteristic to show is that unrolling preserves subtyping. But for that, we first need a couple of

simple lemmas about type elimination contexts.

Lemma A.52 (Properties of Type Elimination).

(1) If Γ ⊢ 𝑇 [𝜏] : 𝜅′, then Γ ⊢ 𝜏 : 𝜅.

(2) If Γ ⊢ 𝑇 [𝜏] : 𝜅′ and Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝜏 ′ : 𝜅, then Γ ⊢ 𝑇 [𝜏 ′] : 𝜅′.
(3) If Γ ⊢ 𝜏 ≤ 𝜏 ′, then Γ ⊢ 𝑇 [𝜏] ≤ 𝑇 [𝜏 ′].

Proof. Each by induction on the (first) derivation. □

Lemma A.53 (Possible Type Eliminations). Let Γ ⊢ 𝜏 : 𝜅 and Γ ⊢ 𝑇 [𝜏] : 𝜅′.
(1) If 𝜅 = Ω, then 𝑇 = _ and 𝜅′ = 𝜅.

(2) If 𝜅 = 𝜅1 × 𝜅2, then either 𝑇 = _ and 𝜅′ = 𝜅, or 𝑇 = 𝑇 ′ [_.𝑖] for some 𝑖 .

(3) If 𝜅 = 𝜅1 → 𝜅2, then either 𝑇 = _ and 𝜅′ = 𝜅, or 𝑇 = 𝑇 ′ [_ 𝜏1] with Γ ⊢ 𝜏1 : 𝜅1.
12
Unlike Compagnoni, we do not restrict reflexivity here, since that is actually irrelevant to the algorithm — in fact, an

implementation that already canonicalises types will benefit from a more general reflexivity rule.
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Proof. By induction on the second derivation. □

With that, we can prove that unrolling has the needed properties. One technical complication is

that equivalences and subtyping of higher-order unrollings (the last two parts of the following

lemma) generally only hold inside a suitable type elimination context (𝑇 ′
below) that observes

them at ground kind Ω. These relations would only hold directly at higher kinds if we included

𝜂-equivalence rules for types into the calculus (in which case the definition of unrolling could also

be simplified and skip the 𝜂-expansion).

Lemma A.54 (Properties of Unrolling).

(1) If Γ ⊢ 𝜏 : 𝜅 and unroll𝜅 (𝜏) is defined, then unroll𝜅 (𝜏 [𝜏1/𝛼]) ≡ unroll𝜅 (𝜏) [𝜏1/𝛼].
(2) If Γ ⊢ 𝜏 : 𝜅 and unroll𝜅 (𝜏) is defined, then Γ ⊢ unroll𝜅 (𝜏) : 𝜅.
(3) If Γ ⊢ 𝑇 [𝜏] : 𝜅 and unroll𝜅 (𝑇 [𝜏]) is defined, then unroll𝜅 (𝑇 [𝜏]) ≡ 𝑇 [unroll𝜅′ (𝜏)].
(4) If Γ ⊢ 𝑇 [𝜇𝛼≤𝜏1 .𝜏2] : 𝜅 and Γ ⊢ 𝑇 ′ [𝑇 [𝜇𝛼≤𝜏1.𝜏2]] : Ω,

then 𝑇 ′ [unroll𝜅 (𝑇 [𝜇𝛼≤𝜏1 .𝜏2])] ≡ 𝑇 ′ [𝑇 [𝜏2 [𝜇𝛼≤𝜏1 .𝜏2/𝛼]]].
(5) If Γ ⊢ 𝜏 ≤ 𝜏 ′ : 𝜅 and unroll𝜅 (𝜏) and unroll𝜅 (𝜏 ′) are defined and Γ ⊢ 𝑇 ′ [𝜏] : Ω,

then Γ ⊢ 𝑇 ′ [unrollΩ (𝜏)] ≤ 𝑇 ′ [unroll𝜅 (𝜏 ′)].
Proof.

(1) By induction on 𝜅.

(2) By induction on 𝜅.

• Case 𝜅 = Ω and 𝜏 = ⊤
– immediate

• Case 𝜅 = Ω and 𝜏 = 𝑇 [𝜇𝛼≤𝜏1.𝜏2]
– by Properties of Type Elimination (1), Γ ⊢ 𝜇𝛼≤𝜏1 .𝜏2 : 𝜅′
– by inversion of kinding, Γ ⊢ 𝜏1 : 𝜅′ and Γ, 𝛼≤𝜏1 ⊢ 𝜏2 : 𝜅′
– by rule S-Rec-Sup, Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 ≤ 𝜏1
– by Substitution, Γ ⊢ 𝜏2 [𝜇𝛼≤𝜏1.𝜏2/𝛼] : 𝜅′
– by Properties of Type Elimination (2), Γ ⊢ 𝑇 [𝜏2 [𝜇𝛼≤𝜏1.𝜏2/𝛼]] : 𝜅

• Case 𝜅 = 𝜅1 × 𝜅2
– by kinding rule for projection, Γ ⊢ 𝜏 .1 : 𝜅1 and Γ ⊢ 𝜏 .2 : 𝜅2
– by induction, Γ ⊢ unroll𝜅1 (𝜏 .1) : 𝜅1 and Γ ⊢ unroll𝜅2 (𝜏 .2) : 𝜅2
– by kinding rule for tuples, Γ ⊢ ⟨unroll𝜅1 (𝜏 .1), unroll𝜅2 (𝜏 .2)⟩ : 𝜅1 × 𝜅2

• Case 𝜅 = 𝜅1 → 𝜅2
– by Regularity, ⊢ Γ ok

– by Properties of Higher-order Top, Γ ⊢ ⊤𝜅1 : 𝜅1
– by environment rule, ⊢ Γ, 𝛼≤⊤𝜅1 ok
– by kinding rule for variables, Γ, 𝛼≤⊤𝜅1 ⊢ 𝛼 : 𝜅1
– by Weakening, Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏 : 𝜅1 → 𝜅2
– by kinding rule for application, Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏 𝛼 : 𝜅2
– by induction, Γ, 𝛼≤⊤𝜅2 ⊢ unroll𝜅2 (𝜏 𝛼) : 𝜅2
– by kinding rule for abstraction, Γ ⊢ 𝜆𝛼 :𝜅1 . unroll𝜅2 (𝜏 𝛼) : 𝜅1 → 𝜅2

(3) By induction on the structure of 𝑇 .

• Case 𝑇 = _

– then unroll𝜅 (𝑇 [𝜏]) = unroll𝜅 (𝜏) = 𝑇 [unroll𝜅 (𝜏)]
– by reflexivity, unroll𝜅 (𝑇 [𝜏]) ≡ 𝑇 [unroll𝜅 (𝜏)]

• Case 𝑇 = 𝑇 ′.𝑖
– by inversion of kinding, Γ ⊢ 𝑇 ′ [𝜏] : 𝜅1 × 𝜅2 and 𝜅 = 𝜅𝑖
– by induction, unroll𝜅1×𝜅2 (𝑇 ′ [𝜏]) ≡ 𝑇 ′ [unroll𝜅1×𝜅2 (𝜏)]
– by definition, unroll𝜅1×𝜅2 (𝑇 ′ [𝜏]) = ⟨unroll𝜅1 (𝑇 ′ [𝜏] .1), unroll𝜅2 (𝑇 ′ [𝜏] .2)⟩
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– by reduction, ⟨unroll𝜅1 (𝑇 ′ [𝜏] .1), unroll𝜅2 (𝑇 ′ [𝜏] .2)⟩.𝑖 ≡ unroll𝜅𝑖 (𝑇 ′ [𝜏] .𝑖)
– by symmetry and transitivity, unroll𝜅𝑖 (𝑇 ′ [𝜏] .𝑖) ≡ 𝑇 ′ [unroll𝜅1×𝜅2 (𝜏)] .𝑖

• Case 𝑇 = 𝑇 ′ 𝜏1
– by inversion of kinding, Γ ⊢ 𝑇 ′ [𝜏] : 𝜅1 → 𝜅2 and Γ ⊢ 𝜏1 : 𝜅1 and 𝜅 = 𝜅2
– by induction, unroll𝜅1→𝜅2 (𝑇 ′ [𝜏]) ≡ 𝑇 ′ [unroll𝜅1→𝜅2 (𝜏)]
– by definition, unroll𝜅1→𝜅2 (𝑇 ′ [𝜏]) = 𝜆𝛼 :𝜅1 . unroll𝜅2 (𝑇 ′ [𝜏] 𝛼)
– by reduction, (𝜆𝛼 :𝜅1. unroll𝜅2 (𝑇 ′ [𝜏] 𝛼)) 𝜏1 ≡ unroll𝜅2 (𝑇 ′ [𝜏] 𝜏1)
– by symmetry and transitivity, unroll𝜅2 (𝑇 ′ [𝜏] 𝜏1) ≡ 𝑇 ′ [unroll𝜅1→𝜅2 (𝜏)] 𝜏1

(4) By induction on 𝜅. Let 𝜏 = 𝜇𝛼≤𝜏1 .𝜏2.
• Case 𝜅 = Ω
– by definition, unrollΩ (𝑇 [𝜏]) = 𝑇 [𝜏2 [𝜏/𝛼]]
– by reflexivity, 𝑇 ′ [unrollΩ (𝑇 [𝜏])] ≡ 𝑇 ′ [𝑇 [𝜏2 [𝜏/𝛼]]]

• Case 𝜅 = 𝜅1 × 𝜅2
– by Possible Type Eliminations, 𝑇 ′ = 𝑇 ′′ [_.𝑖]
– by kinding rule for projection, Γ ⊢ 𝑇 [𝜏] .1 : 𝜅1 and Γ ⊢ 𝑇 [𝜏] .2 : 𝜅2
– by induction, 𝑇 ′′ [unroll𝜅𝑖 (𝑇 [𝜏] .𝑖)] ≡ 𝑇 ′′ [𝑇 [𝜏2 [𝜏/𝛼]] .𝑖]
– by definition, unroll𝜅1×𝜅2 (𝑇 [𝜏]) = ⟨unroll𝜅1 (𝑇 [𝜏] .1), unroll𝜅2 (𝑇 [𝜏] .2)⟩
– hence by reduction, 𝑇 ′ [unroll𝜅1×𝜅2 (𝑇 [𝜏])] ≡ 𝑇 ′′ [unroll𝜅𝑖 (𝑇 [𝜏] .𝑖)]
– by transitivity, 𝑇 ′ [unroll𝜅1×𝜅2 (𝑇 [𝜏])] ≡ 𝑇 ′′ [𝑇 [𝜏2 [𝜏/𝛼]] .𝑖] = 𝑇 ′ [𝑇 [𝜏2 [𝜏/𝛼]]]

• Case 𝜅 = 𝜅1 → 𝜅2
– by Possible Type Eliminations, 𝑇 ′ = 𝑇 ′′ [_ 𝜏𝑎] and Γ ⊢ 𝜏𝑎 : 𝜅1
– by kinding rule for application, Γ ⊢ 𝑇 [𝜏] 𝜏𝑎 : 𝜅2
– by induction, 𝑇 ′′ [unroll𝜅 (𝑇 [𝜏] 𝜏𝑎)] ≡ 𝑇 ′′ [𝑇 [𝜏2 [𝜏/𝛼]] 𝜏𝑎]
– by definition, unroll𝜅1→𝜅2 (𝑇 [𝜏]) = 𝜆𝛼 ′

:𝜅1. unroll𝜅2 (𝑇 [𝜏] 𝛼 ′)
– hence by reduction, 𝑇 ′ [unroll𝜅1→𝜅2 (𝑇 [𝜏])] ≡ 𝑇 ′′ [unroll𝜅2 (𝑇 [𝜏] 𝜏𝑎)]
– by transitivity, 𝑇 ′ [unroll𝜅1→𝜅2 (𝑇 [𝜏])] ≡ 𝑇 ′′ [𝑇 [𝜏2 [𝜏/𝛼]] 𝜏𝑎] = 𝑇 ′ [𝑇 [𝜏2 [𝜏/𝛼]]]

(5) By induction on the subtyping derivation. The only possible cases are the following.

• Case reflexivity rule

– by inversion, 𝜏 ≡ 𝜏 ′

– by definition, unroll𝜅 (𝜏) = unroll𝜅 (𝜏 ′)
– by reflexivity, Γ ⊢ unroll𝜅 (𝜏) ≤ unroll𝜅 (𝜏 ′)

• Case transitivity rule

– by inversion, Γ ⊢ 𝜏 ≤ 𝜏 ′′ and Γ ⊢ 𝜏 ′′ ≤ 𝜏 ′ and Γ ⊢ 𝜏 ′′ : 𝜅
– by induction, Γ ⊢ unroll𝜅 (𝜏) ≤ unroll𝜅 (𝜏 ′′) and Γ ⊢ unroll𝜅 (𝜏 ′′) ≤ unroll𝜅 (𝜏 ′)
– by transitivity, Γ ⊢ unroll𝜅 (𝜏) ≤ unroll𝜅 (𝜏 ′)

• Case Γ ⊢ 𝜏 ≤ ⊤
– by inversion of kinding, 𝜅 = Ω
– by Possible Type Eliminations, 𝑇 ′ = _

– by definition, unrollΩ (⊤) = ⊤
– by subtyping rule for top, Γ ⊢ unrollΩ (𝜏) ≤ ⊤

• Case Γ ⊢ 𝜇𝛼≤𝜏1.𝜏2 ≤ 𝜏1 (S-Rec-Sup)

– by inversion of kinding, Γ ⊢ 𝜏1 : 𝜅 and Γ, 𝛼≤𝜏1 ⊢ 𝜏2 : 𝜅 and Γ, 𝛼≤𝜏1 ⊢ 𝜏2 ≤ unroll𝜅 (𝜏1)
– by Substitution, Γ ⊢ 𝜏2 [𝜇𝛼≤𝜏1 .𝜏2/𝛼] ≤ unroll𝜅 (𝜏1)
– by Properties of Type Elimination (3), Γ ⊢ 𝑇 ′ [𝜏2 [𝜇𝛼≤𝜏1 .𝜏2/𝛼]] ≤ 𝑇 ′ [unroll𝜅 (𝜏1)]
– by part (4), 𝑇 ′ [unroll𝜅 (𝜇𝛼≤𝜏1.𝜏2)] ≡ 𝑇 ′ [𝜏2 [𝜇𝛼≤𝜏1.𝜏2/𝛼]]
– by reflexivity and transitivity rules, Γ ⊢ 𝑇 ′ [unroll𝜅 (𝜇𝛼≤𝜏1.𝜏2)] ≤ 𝑇 ′ [unroll𝜅 (𝜏1)]

• Case Γ ⊢ ⟨𝜏1, 𝜏2⟩ ≤ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩

– let 𝜏 = ⟨𝜏1, 𝜏2⟩ and 𝜏 ′ = ⟨𝜏 ′
1
, 𝜏 ′

2
⟩
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– by inversion, Γ ⊢ 𝜏1 ≤ 𝜏 ′
1
and Γ ⊢ 𝜏2 ≤ 𝜏 ′

2

– by inversion of kinding, Γ ⊢ 𝜏1 : 𝜅1 and Γ ⊢ 𝜏2 : 𝜅2 and Γ ⊢ 𝜏 ′
1
: 𝜅1 and Γ ⊢ 𝜏 ′

2
: 𝜅2 and

𝜅 = 𝜅1 × 𝜅2
– by Possible Type Eliminations, 𝑇 ′ = 𝑇 ′′ [_.𝑖]
– let 𝑇1 = 𝑇 ′′ [_.1] and 𝑇2 = 𝑇 ′′ [_.2]
– by reduction, 𝑇 ′ [𝜏] ≡ 𝑇1 [𝜏1] and 𝑇 ′ [𝜏 ′] ≡ 𝑇1 [𝜏 ′1] and 𝑇 ′ [𝜏] ≡ 𝑇2 [𝜏2] and 𝑇 ′ [𝜏 ′] ≡ 𝑇2 [𝜏 ′2]
– by induction, Γ ⊢ 𝑇 ′′ [unroll𝜅1 (𝜏1)] ≤ 𝑇 ′′ [unroll𝜅1 (𝜏 ′1)] and Γ ⊢ 𝑇 ′′ [unroll𝜅2 (𝜏2)] ≤
𝑇 ′′ [unroll𝜅2 (𝜏 ′2)]

– by definition, unroll𝜅 (𝜏) = ⟨unroll𝜅1 (𝜏 .1), unroll𝜅2 (𝜏 .2)⟩
and unroll𝜅 (𝜏 ′) = ⟨unroll𝜅1 (𝜏 ′ .1), unroll𝜅2 (𝜏 ′ .2)⟩

– by reduction, 𝑇 ′ [unroll𝜅 (𝜏)] ≡ 𝑇 ′′ [unroll𝜅𝑖 (𝜏 .𝑖)] ≡ 𝑇 ′′ [unroll𝜅𝑖 (𝜏𝑖 )]
and 𝑇 ′ [unroll𝜅 (𝜏 ′)] ≡ 𝑇 ′′ [unroll𝜅𝑖 (𝜏 ′ .𝑖)] ≡ 𝑇 ′′ [unroll𝜅𝑖 (𝜏 ′𝑖 )]

– by transitivity rule, Γ ⊢ 𝑇 ′ [unroll𝜅 (𝜏)] ≤ 𝑇 ′ [unroll𝜅 (𝜏 ′)]
• Case Γ ⊢ 𝜏 .𝑖 ≤ 𝜏 ′ .𝑖
– by inversion, Γ ⊢ 𝜏 ≤ 𝜏 ′

– by inversion of kinding, Γ ⊢ 𝜏 : 𝜅1 × 𝜅2 and Γ ⊢ 𝜏 ′ : 𝜅′
1
× 𝜅′

2
and 𝜅 = 𝜅𝑖 = 𝜅′𝑖

– let 𝑇 ′′ = 𝑇 ′ [_.𝑖]
– by induction, Γ ⊢ 𝑇 ′′ [unroll𝜅1×𝜅2 (𝜏)] ≤ 𝑇 ′′ [unroll𝜅1×𝜅2 (𝜏 ′)]

• Case Γ ⊢ 𝜆𝛼 :𝜅1.𝜏2 ≤ 𝜆𝛼 :𝜅1 .𝜏
′
2

– let 𝜏 = 𝜆𝛼 :𝜅1.𝜏2 and 𝜏
′ = 𝜆𝛼 :𝜅1 .𝜏

′
2

– by inversion, Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏2 ≤ 𝜏 ′
2

– by inversion of kinding, Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏2 : 𝜅2 and Γ, 𝛼≤⊤𝜅1 ⊢ 𝜏 ′2 : 𝜅2 and 𝜅 = 𝜅1 → 𝜅2
– by Possible Type Eliminations, 𝑇 ′ = 𝑇 ′′ [_ 𝜏1] and Γ ⊢ 𝜏1 : 𝜅1
– by reduction, 𝑇 ′ [𝜏] ≡ 𝑇 ′′ [𝜏2 [𝜏1/𝛼]] and 𝑇 ′ [𝜏 ′] ≡ 𝑇 ′′ [𝜏 ′

2
[𝜏1/𝛼]]

– by Weakening, Γ, 𝛼≤⊤𝜅1 ⊢ 𝑇 ′′ [𝜏] : 𝜅2 and Γ, 𝛼≤⊤𝜅1 ⊢ 𝑇 ′′ [𝜏 ′] : 𝜅2
– by Properties of Type Elimination, Γ, 𝛼≤⊤𝜅1 ⊢ 𝑇 ′′ [𝜏2] : 𝜅2 and Γ, 𝛼≤⊤𝜅1 ⊢ 𝑇 ′′ [𝜏 ′

2
] : 𝜅2

– by induction, Γ, 𝛼≤⊤𝜅1 ⊢ 𝑇 ′′ [unroll𝜅2 (𝜏2)] ≤ 𝑇 ′′ [unroll𝜅2 (𝜏 ′2)]
– by Substitution, Γ ⊢ 𝑇 ′′ [unroll𝜅2 (𝜏2 [𝜏1/𝛼])] ≤ 𝑇 ′′ [unroll𝜅2 (𝜏 ′2 [𝜏1/𝛼])]
– by definition, unroll𝜅 (𝜏) = 𝜆𝛼 :𝜅1. unroll𝜅2 (𝜏 𝛼)
and unroll𝜅 (𝜏 ′) = 𝜆𝛼 :𝜅1 . unroll𝜅2 (𝜏 ′ 𝛼)

– by reduction, 𝑇 ′ [unroll𝜅 (𝜏)] = 𝑇 ′′ [unroll𝜅 (𝜏) 𝜏1] ≡ 𝑇 ′′ [unroll𝜅2 (𝜏 𝛼) [𝜏1/𝛼]]
and 𝑇 ′ [unroll𝜅 (𝜏 ′)] = 𝑇 ′′ [unroll𝜅 (𝜏 ′) 𝜏1] ≡ 𝑇 ′′ [unroll𝜅2 (𝜏 ′ 𝛼) [𝜏1/𝛼]]

– by part (1), 𝑇 ′′ [unroll𝜅2 (𝜏 𝛼) [𝜏1/𝛼]] ≡ 𝑇 ′′ [unroll𝜅2 (𝜏 𝜏1)]
and 𝑇 ′′ [unroll𝜅2 (𝜏 ′ 𝛼) [𝜏1/𝛼]] ≡ 𝑇 ′′ [unroll𝜅2 (𝜏 ′ 𝜏1)]

– by reduction, 𝑇 ′′ [unroll𝜅2 (𝜏 𝜏1)] ≡ 𝑇 ′′ [unroll𝜅2 (𝜏2 [𝜏1/𝛼])]
and 𝑇 ′′ [unroll𝜅2 (𝜏 ′ 𝜏1)] ≡ 𝑇 ′′ [unroll𝜅2 (𝜏 ′2 [𝜏1/𝛼])]

– by transitivity rule, Γ ⊢ 𝑇 ′ [unroll𝜅 (𝜏)] ≤ 𝑇 ′ [unroll𝜅 (𝜏 ′)]
• Case Γ ⊢ 𝜏 𝜏1 ≤ 𝜏 ′ 𝜏1
– by inversion, Γ ⊢ 𝜏 ≤ 𝜏 ′

– by inversion of kinding, Γ ⊢ 𝜏 : 𝜅1 → 𝜅2 and Γ ⊢ 𝜏 ′ : 𝜅1 × 𝜅2 and Γ ⊢ 𝜏1 : 𝜅1 and 𝜅 = 𝜅2
– let 𝑇 ′′ = 𝑇 ′ [_ 𝜏1]
– by induction, Γ ⊢ 𝑇 ′′ [unroll𝜅1→𝜅2 (𝜏)] ≤ 𝑇 ′′ [unroll𝜅1→𝜅2 (𝜏 ′)] □

A.11 Preservation
We are now equipped to prove type soundness the usual way, starting with preservation.

Lemma A.55 (Inversion of Typing). Let Γ ⊢ 𝑒 : 𝜏 .
(1) If 𝑒 = 𝑥 , then Γ ⊢ Γ(𝑥) ≤ 𝜏 .
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(2) If 𝑒 = ⟨𝑣1, 𝑣2⟩, then Γ ⊢ 𝑣1 : 𝜏1 and Γ ⊢ 𝑣2 : 𝜏2 and Γ ⊢ 𝜏1 × 𝜏2 ≤ 𝜏 .

(3) If 𝑒 = 𝑒′ .𝑖 , then Γ ⊢ 𝑒′ : 𝜏1 × 𝜏2 and Γ ⊢ 𝜏𝑖 ≤ 𝜏 .

(4) If 𝑒 = 𝜆𝑥 :𝜏1.𝑒2, then Γ, 𝑥 :𝜏1 ⊢ 𝑒2 : 𝜏2 and Γ ⊢ 𝜏1 → 𝜏2 ≤ 𝜏 .

(5) If 𝑒 = 𝑒1 𝑒2, then Γ ⊢ 𝑒1 : 𝜏2 → 𝜏1 and Γ ⊢ 𝑒2 : 𝜏2 and Γ ⊢ 𝜏1 ≤ 𝜏 .

(6) If 𝑒 = 𝜆𝛼≤𝜏1.𝑒2, then Γ, 𝛼≤𝜏1 ⊢ 𝑒2 : 𝜏2 and Γ ⊢ ∀𝛼≤𝜏1.𝜏2 ≤ 𝜏 .

(7) If 𝑒 = 𝑒1 𝜏2, then Γ ⊢ 𝑒1 : ∀𝛼≤𝜏 ′2 .𝜏1 and Γ ⊢ 𝜏2 ≤ 𝜏 ′
2
: 𝜅 and Γ ⊢ 𝜏1 [𝜏2/𝛼] ≤ 𝜏 .

(8) If 𝑒 = roll𝜏 ′ 𝑣 , then 𝜏 ′ = 𝑇 [𝜇𝛼≤𝜏1.𝜏2] and Γ ⊢ 𝜏 ′ : Ω and Γ ⊢ 𝑣 : unrollΩ (𝜏 ′) and Γ ⊢ 𝜏 ′ ≤ 𝜏 .

(9) If 𝑒 = unroll 𝑒′, then Γ ⊢ 𝑒′ : 𝑇 [𝜇𝛼≤𝜏1 .𝜏2] and Γ ⊢ unrollΩ (𝑇 [𝜇𝛼≤𝜏1 .𝜏2]) ≤ 𝜏 .

Proof. By induction on the derivation. □

Theorem A.56 (Preservation). If Γ ⊢ 𝑒 : 𝜏 and 𝑒 ↩→ 𝑒′, then Γ ⊢ 𝑒′ : 𝜏 .

Proof. By induction on the derivation of ↩→. Most cases are standard using Inversion of Typing,

the only interesting new one is elimination of recursive types:

• Case unroll (roll𝜏 ′ 𝑣) ↩→ 𝑣

– by Inversion of Typing, Γ ⊢ roll𝜏 ′ 𝑣 : 𝑇 [𝜇𝛼≤𝜏1 .𝜏2] and Γ ⊢ unrollΩ (𝑇 [𝜇𝛼≤𝜏1.𝜏2]) ≤ 𝜏

– by Regularity, Γ ⊢ 𝑇 [𝜇𝛼≤𝜏1.𝜏2] : Ω
– by Inversion of Typing, 𝜏 ′ = 𝑇 ′ [𝜇𝛼≤𝜏 ′

1
.𝜏 ′
2
] and Γ ⊢ 𝑣 : unrollΩ (𝜏 ′) and Γ ⊢ 𝜏 ′ : Ω and

Γ ⊢ 𝜏 ′ ≤ 𝑇 [𝜇𝛼≤𝜏1 .𝜏2]
– by Properties of Unrolling, Γ ⊢ unrollΩ (𝜏 ′) ≤ unrollΩ (𝑇 [𝜇𝛼≤𝜏1.𝜏2])
– by transitivity rule for subtyping, Γ ⊢ unrollΩ (𝜏 ′) ≤ 𝜏

– by subsumption rule, Γ ⊢ 𝑣 : 𝜏 □

A.12 Progress
Finally, we prove progress. This is almost entirely standard as well.

Lemma A.57 (Canonical Subtypes). Let · ⊢ 𝜏 ≤ 𝜏 ′ : 𝜅.

(1) If 𝜏 ′ ≡ 𝜏 ′
1
× 𝜏 ′

2
, then 𝜏 ≡ 𝜏1 × 𝜏2 such that · ⊢ 𝜏1 ≤ 𝜏 ′

1
and · ⊢ 𝜏2 ≤ 𝜏 ′

2
.

(2) If 𝜏 ′ ≡ 𝜏 ′
1
→ 𝜏 ′

2
, then 𝜏 ≡ 𝜏1 → 𝜏2 such that · ⊢ 𝜏 ′

1
≤ 𝜏1 and · ⊢ 𝜏2 ≤ 𝜏 ′

2
.

(3) If 𝜏 ′ ≡ ∀𝛼≤𝜏 ′
1
.𝜏 ′
2
, then 𝜏 ≡ ∀𝛼≤𝜏1.𝜏2 such that 𝜏1 ≡ 𝜏 ′

1
and · ⊢ 𝜏2 ≤ 𝜏 ′

2
.

(4) If 𝜏 ′ ≡ 𝑇 ′ [𝜇𝛼≤𝜏 ′
1
.𝜏 ′
2
], then 𝜏 ≡ 𝑇 [𝜇𝛼≤𝜏1.𝜏2] such that either 𝜏 ≡ 𝜏 ′ or ⊢ 𝑇 [𝜏1] ≤ 𝑇 ′ [𝜇𝛼≤𝜏 ′

1
.𝜏 ′
2
].

(5) If 𝜏 ′ ≡ ⟨𝜏 ′
1
, 𝜏 ′

2
⟩, then 𝜏 ≡ ⟨𝜏1, 𝜏2⟩ such that · ⊢ 𝜏1 ≤ 𝜏 ′

1
and · ⊢ 𝜏2 ≤ 𝜏 ′

2
.

(6) If 𝜏 ′ ≡ 𝜆𝛼 :𝜅.𝜏 ′
2
, then 𝜏 ≡ 𝜆𝛼 :𝜅.𝜏2 such that ·, 𝛼≤⊤𝜅 ⊢ 𝜏2 ≤ 𝜏 ′

2
.

Proof. By Completeness of Algorithmic Subtyping we have · ⊢𝑎 𝜏↓ ≤ 𝜏 ′↓ : 𝜅. Each result then

follows from inversion and Soundness of Algorithmic Subtyping. □

Lemma A.58 (Canonical Values). Let · ⊢ 𝑣 : 𝜏 .

(1) If · ⊢ 𝜏 ≤ 𝜏1 × 𝜏2, then 𝑣 = ⟨𝑣1, 𝑣2⟩.
(2) If · ⊢ 𝜏 ≤ 𝜏1 → 𝜏2, then 𝑣 = 𝜆𝑥 :𝜏 ′

1
.𝑒 .

(3) If · ⊢ 𝜏 ≤ ∀𝛼≤𝜏1 .𝜏2, then 𝑣 = 𝜆𝛼≤𝜏 ′
1
.𝑒 .

(4) If · ⊢ 𝜏 ≤ 𝑇 [𝜇𝛼≤𝜏1.𝜏2], then 𝑣 = roll𝜏 ′ 𝑣 ′.

Proof. By induction on the derivation, using Canonical Subtypes in the case of the subsumption

rule and to exclude incompatible rules. □

Theorem A.59 (Progress). If · ⊢ 𝑒 : 𝜏 and 𝑒 ≠ 𝑣 for any 𝑣 , then 𝑒 ↩→ 𝑒′ for some 𝑒′.

Proof. By induction on the derivation. The only non-standard case is unrolling:

• Case 𝑒 = unroll 𝑒1
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– by Inversion of Typing, · ⊢ 𝑒1 : 𝑇 [𝜇𝛼≤𝜏1.𝜏2]
– subcase 𝑒1 = 𝑣

∗ by reflexivity rule, · ⊢ 𝑇 [𝜇𝛼≤𝜏1.𝜏2] ≤ 𝑇 [𝜇𝛼≤𝜏1.𝜏2]
∗ by Canonical Values, 𝑣 = roll𝜏 ′ 𝑣 ′

∗ by reduction rule, unroll (roll𝜏 ′ 𝑣 ′) ↩→ 𝑣 ′

– subcase 𝑒1 ≠ 𝑣

∗ by induction, 𝑒1 ↩→ 𝑒′
1

∗ by reduction rule for contexts, unroll 𝑒1 ↩→ unroll 𝑒′
1

□

B META-THEORY OF FULL 𝜆misu

In this section, we show the modifications necessary to the statements and proofs in order to cover

full 𝜆misu. We only show definitions, lemmas and proof cases that change. The only deeply affected

is the lemma on Properties of Unrolling.

B.1 Regularity
Lemma B.1 (Subtyping of Higher-Order Top). If Γ ⊢ 𝜏 : 𝜅, then Γ ⊢ 𝜏 ≤ ⊤𝜅 .

Proof. By induction on the derivation. The modified case is:

• Case Γ ⊢ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′ : 𝜅 with 𝜅 = 𝜅1 × 𝜅2
– let 𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′
– by inversion, Γ ⊢ 𝜏1 : 𝜅1 and Γ, 𝛼1≤𝜏1 ⊢ 𝜏2 : 𝜅2
– by induction, Γ ⊢ 𝜏1 ≤ ⊤𝜅1 and Γ, 𝛼1≤𝜏1 ⊢ 𝜏2 ≤ ⊤𝜅2
– by kinding rule for projection, Γ ⊢ 𝜏 .1 : 𝜅1
– by Substitution, Γ ⊢ 𝜏2 [𝜏 .1/𝛼1] ≤ ⊤𝜅2
– by kinding rule for tuples, Γ ⊢ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩ : 𝜅1 × 𝜅2
– by definition, ⊤𝜅 = ⟨⊤𝜅1 ,⊤𝜅2⟩
– by subtyping rule for tuples, Γ ⊢ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩ ≤ ⟨⊤𝜅1 ,⊤𝜅2⟩
– by subtyping rule for recursive types, Γ ⊢ 𝜏 ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩
– by subtyping transitivity rule, Γ ⊢ 𝜏 ≤ ⊤𝜅 □

B.2 Type Reduction
Definition B.1 (Neutral Type). A neutral type is one of the form𝑇 [𝛼] or𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′].

Definition B.2 (Parallel Reduction).

𝜏1 ↩→→ 𝜏 ′
1

𝜏2 ↩→→ 𝜏 ′
2

𝜏3 ↩→→ 𝜏 ′
3

𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3 ↩→→ 𝜇⟨𝛼1≤𝜏 ′
1
, 𝛼2≤𝜏 ′

2
⟩.𝜏 ′

3

B.3 Pre-Kinding
Definition B.3 (Pre-Kinding). The relation Γ ⊢′ 𝜏 : 𝜅 is the same as Γ ⊢ 𝜏 : 𝜅, but with the

following replacement rule for 𝜇-types:

Γ ⊢′ 𝜏1 : 𝜅1 Γ, 𝛼1≤𝜏2 ⊢′ 𝜏2 : 𝜅2 Γ, 𝛼1≤𝜏2, 𝛼2≤𝜏2 ⊢′ 𝜏 : 𝜅1 × 𝜅2

Γ ⊢′ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 : 𝜅1 × 𝜅2

B.4 Strong Normalisation
Lemma B.2 (Neutral Types).

(1) If 𝑇 [𝛼] terminates, then 𝑇 [𝛼] ∈ ⟦𝜅⟧.

(2) If 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏] terminates, then 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏] ∈ ⟦𝜅⟧.
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Lemma B.3 (Completeness wrt. Kinding (“Fundamental Property”)).

If Γ ⊢′ 𝜏 : 𝜅 and 𝛾 ∈ ⟦Γ⟧, then 𝛾 (𝜏) ∈ ⟦𝜅⟧.

Proof. By induction on the derivation.

• Case Γ ⊢′ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 : 𝜅1 × 𝜅2 (assuming 𝛼1, 𝛼2 are fresh)

– by inversion, Γ ⊢′ 𝜏1 : 𝜅1 and Γ, 𝛼1≤𝜏1 ⊢′ 𝜏2 : 𝜅2 and Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢′ 𝜏 : 𝜅1 × 𝜅2
– by induction, 𝛾 (𝜏1) ∈ ⟦𝜅⟧

– let Γ1 = Γ, 𝛼1≤𝜏1 and Γ2 = Γ1, 𝛼2≤𝜏2
– let 𝛾1 = 𝛾 ◦ [𝛼1/𝛼1] and 𝛾2 = 𝛾1 ◦ [𝛼2/𝛼2]
– by Neutral Types, 𝛼1 ∈ ⟦𝜅1⟧ and 𝛼2 ∈ ⟦𝜅2⟧

– by definition of ⟦Γ⟧, 𝛾1 ∈ ⟦Γ1⟧ and 𝛾2 ∈ ⟦Γ2⟧
– by induction, 𝛾 (𝜏2) = 𝛾1 (𝜏2) ∈ ⟦𝜅1⟧ and 𝛾 (𝜏) = 𝛾1 (𝜏) = 𝛾2 (𝜏) ∈ ⟦𝜅1 × 𝜅2⟧

– by Main Lemma, 𝛾 (𝜏1) and 𝛾 (𝜏2) and 𝛾 (𝜏) terminate

– hence, 𝜇⟨𝛼1≤𝛾 (𝜏1), 𝛼2≤𝛾 (𝜏2)⟩.𝛾 (𝜏) terminates

– by Neutral Types, 𝛾 (𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏) = 𝜇⟨𝛼1≤𝛾 (𝜏1), 𝛼2≤𝛾 (𝜏2)⟩.𝛾 (𝜏) ∈ ⟦𝜅1 × 𝜅2⟧ □

B.5 Normal Subtyping
Definition B.4 (Promotion).

promoteΓ (𝛼) = Γ(𝛼)
promoteΓ (𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏) = ⟨𝜏1, 𝜏2 [(𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏).1/𝛼1]⟩

B.6 Equivalence of Normal Subtyping
Lemma B.4 (Substitution for Normal Subtyping). If Γ1, 𝛼≤⊤𝜅 , Γ2 ⊢𝑛 𝜏 ≤ 𝜏 ′ and Γ ⊢ 𝜏𝑎 : 𝜅,

then Γ1, Γ2 [𝜏𝑎/𝛼]↓ ⊢𝑛 𝜏 [𝜏𝑎/𝛼]↓ ≤ 𝜏 ′ [𝜏𝑎/𝛼]↓.

Proof. As before. □

Proposition B.5 (Completeness of Normal Subtyping). If Γ ⊢ 𝜏 ≤ 𝜏 ′, then Γ↓ ⊢𝑛 𝜏↓ ≤ 𝜏 ′↓.

Proof. By induction on the derivation.

• Case Γ ⊢ 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3 ≤ ⟨𝜏1, 𝜏2 [(𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3).1/𝛼1]⟩
– let 𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3
– by definition, promoteΓ↓ (𝜏↓) = ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩↓
– by rule NS-Refl, Γ↓ ⊢𝑛 ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩↓ ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩↓
– let 𝑇 = _

– by rule NS-Neutr, Γ↓ ⊢𝑛 𝜏↓ ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩↓ □

B.7 Unrolling
Note that the first and last part only hold for unrolling under an empty substitution parameter (as

used in the typing rules for roll/unroll). Nevertheless, the auxiliary substitution parameter on the

unroll function complicates the proof of the last part of the Unrolling lemma, in the case concerning

𝜇-types.

Lemma B.6 (Properties of Unrolling). Assume that for all 𝛼 ∈ dom(𝜎), (1) if Γ ⊢ Γ(𝛼) : 𝜅 , then
Γ ⊢ 𝜎 (𝛼) : 𝜅; and (2) Γ ⊢ 𝜎 (𝛼) ≤ Γ(𝛼). Then:
(1) If Γ ⊢ 𝜏 : 𝜅 and unroll𝜅 (𝜏) is defined, then unroll𝜅 (𝜏 [𝜏1/𝛼]) ≡ unroll𝜅 (𝜏) [𝜏1/𝛼].
(2) If Γ ⊢ 𝜏 : 𝜅 and unroll

𝜎
𝜅 (𝜏) is defined, then Γ ⊢ unroll𝜎𝜅 (𝜏) : 𝜅.

(3) If Γ ⊢ 𝑇 [𝜏] : 𝜅 and unroll
𝜎
𝜅 (𝑇 [𝜏]) is defined, then unroll

𝜎
𝜅 (𝑇 [𝜏]) ≡ 𝑇 [unroll𝜎𝜅′ (𝜏)].
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(4) If 𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏 ′ and Γ ⊢ 𝑇 [𝜏] : 𝜅 and Γ ⊢ 𝑇 ′ [𝑇 [𝜏]] : Ω,
then 𝑇 ′ [unroll𝜎𝜅 (𝑇 [𝜏])] ≡ 𝑇 ′ [𝑇 [𝜏 ′ [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]]].

(5) If Γ ⊢ 𝜏 ≤ 𝜏 ′ : 𝜅 and unroll𝜅 (𝜏) and unroll𝜅 (𝜏 ′) are defined and Γ ⊢ 𝑇 ′ [𝜏] : Ω,
then Γ ⊢ 𝑇 ′ [unrollΩ (𝜏)] ≤ 𝑇 ′ [unroll𝜅 (𝜏 ′)].

Proof.

(1) By induction on 𝜅.

(2) By induction on 𝜅.

• Case 𝜅 = Ω and 𝜏 = 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3]
– let 𝜏 ′ = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3.
– by Properties of Type Elimination (1), Γ ⊢ 𝜏 ′ : 𝜅′
– by inversion of kinding, Γ ⊢ 𝜏1 : 𝜅1 and Γ, 𝛼1≤𝜏1 ⊢ 𝜏2 : 𝜅2 and Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏3 : 𝜅′
– by rule S-Rec-Sup, Γ ⊢ 𝜏 ′ ≤ ⟨𝜏1, 𝜏2 [𝜏 ′ .1/𝛼1]⟩
– by subtyping rule for projection, Γ ⊢ 𝜏 ′ .1 ≤ ⟨𝜏1, 𝜏2 [𝜏 ′ .1/𝛼1]⟩.1 and Γ ⊢ 𝜏 ′ .2 ≤ ⟨𝜏1, 𝜏2 [𝜏 ′ .1/𝛼1]⟩.2
– by type equivalence, ⟨𝜏1, 𝜏2 [𝜏 ′ .1/𝛼1]⟩.1 ≡ 𝜏1 and ⟨𝜏1, 𝜏2 [𝜏 ′ .1/𝛼1]⟩.2 ≡ 𝜏2 [𝜏 ′ .1/𝛼1]
– by transitivity, Γ ⊢ 𝜏 ′ .1 ≤ 𝜏1 and Γ ⊢ 𝜏 ′ .2 ≤ 𝜏2 [𝜏 ′ .1/𝛼1]
– by Substitution, Γ, 𝛼2≤𝜏2 [𝜏 ′ .1/𝛼1] ⊢ 𝜏3 [𝜏 ′ .1/𝛼1] : 𝜅′
– by Substitution, Γ ⊢ 𝜏3 [𝜏 ′ .1/𝛼1, 𝜏 ′ .2/𝛼2] : 𝜅′
– by Properties of Type Elimination (2), Γ ⊢ 𝑇 [𝜏3 [𝜏 ′ .1/𝛼1, 𝜏 ′ .2/𝛼2]] : 𝜅

• Case 𝜅 = Ω and 𝜏 = 𝑇 [𝛼]
– by Properties of Type Elimination (1), Γ ⊢ 𝛼 : 𝜅′

– by inversion of kinding, Γ ⊢ Γ(𝛼) : 𝜅′
– by assumption, Γ ⊢ 𝜎 (𝛼) : 𝜅′
– by Properties of Type Elimination (2), Γ ⊢ 𝑇 [𝜎 (𝛼)] : 𝜅

(3) By induction on the structure of 𝑇 .

(4) By induction on 𝜅. Let 𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3.
• Case 𝜅 = Ω
– by definition, unroll

𝜎
Ω (𝑇 [𝜏]) = 𝑇 [𝜏3 [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]]

– by reflexivity, 𝑇 ′ [unroll𝜎Ω (𝑇 [𝜏])] ≡ 𝑇 ′ [𝑇 [𝜏3 [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]]]
(5) By induction on the subtyping derivation.

• Case Γ ⊢ 𝜏 ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩ with 𝜏 = 𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3 (S-Rec-Tup)
– by inversion of kinding, Γ ⊢ 𝜏1 : 𝜅1 and Γ, 𝛼1≤𝜏1 ⊢ 𝜏2 : 𝜅2 and Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏3 : 𝜅 and

Γ, 𝛼1≤𝜏1, 𝛼2≤𝜏2 ⊢ 𝜏3 ≤ unroll
𝜎
𝜅 (⟨𝜏1, 𝜏2⟩) with 𝜅 = 𝜅1 × 𝜅2 and 𝜎 = [𝜏3.1/𝛼1]

– by subtyping rule for projection, Γ ⊢ 𝜏 .1 ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩.1 and Γ ⊢ 𝜏 .2 ≤ ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩.2
– by kinding rule for projection, Γ ⊢ 𝜏 .1 : 𝜅1 and Γ ⊢ 𝜏 .2 : 𝜅2
– by reduction, ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩.1 ≡ 𝜏1 and ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩.2 ≡ 𝜏2 [𝜏 .1/𝛼1]
– by subtyping transitivity, Γ ⊢ 𝜏 .1 ≤ 𝜏1 and Γ ⊢ 𝜏 .2 ≤ 𝜏2 [𝜏 .1/𝛼1]
– by inversion of kinding, Γ ⊢ 𝜏1 : 𝜅1 and Γ ⊢ 𝜏2 [𝜏 .1/𝛼1] : 𝜅2
– by Substitution, Γ ⊢ 𝜏3 [𝜏 .1/𝛼1, 𝜏 .2/𝛼2] ≤ unroll

𝜎
𝜅 (⟨𝜏1, 𝜏2⟩) [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]

– Assertion: If Γ, 𝛼≤𝜏1 ⊢ 𝜏 ′ : 𝜅′ and Γ ⊢ 𝜏 ′
3
≤ unroll

𝜎
𝜅′ (𝜏 ′) [𝜏 .1/𝛼1, 𝜏 .2/𝛼2], then Γ ⊢ 𝜏 ′

3
≤

unroll𝜅′ (𝜏 ′ [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]).
Proof by local induction on the normal form of 𝜏 ′. The interesting case is the one for

variables, which must be 𝛼1 for the unrolling to be defined:

∗ Case 𝜏 ′↓ = 𝑇 [𝛼1]
· by definition, unroll

𝜎
𝜅′ (𝑇 (𝛼1)) [𝜏 .1/𝛼1, 𝜏 .2/𝛼2] = 𝑇 [𝜏3.1] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]

· by definition, unroll𝜅′ (𝑇 [𝛼1] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]) = unroll𝜅′ (𝑇 ′ [𝜏 .1])
where 𝑇 ′ [_] = 𝑇 [_] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]

· by definition, unroll𝜅′ (𝑇 ′ [𝜏 .1]) = 𝑇 ′ [𝜏3.1] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]
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· by Free Variables, 𝛼1, 𝛼2 ∉ fv(𝜏)
· hence, 𝑇 ′ [_] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2] = 𝑇 ′ [_] = 𝑇 [_] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]
· hence, unroll𝜅′ (𝑇 [𝛼1] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]) = 𝑇 [𝜏3.1] [𝜏 .1/𝛼1, 𝜏 .2/𝛼2] = unroll𝜅′ (𝑇 [𝜏 .1])

– by the assertion, Γ ⊢ 𝜏3 [𝜏 .1/𝛼1, 𝜏 .2/𝛼2] ≤ unroll𝜅 (⟨𝜏1, 𝜏2⟩[𝜏 .1/𝛼1, 𝜏 .2/𝛼2])
– by Free Variables, 𝛼1 ∉ fv(𝜏1) and 𝛼2 ∉ fv(𝜏1) and 𝛼2 ∉ fv(𝜏2)
– hence, ⟨𝜏1, 𝜏2⟩[𝜏 .1/𝛼1, 𝜏 .2/𝛼2] = ⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩
– by Properties of Type Elimination (3),

Γ ⊢ 𝑇 ′ [𝜏3 [𝜏 .1/𝛼1, 𝜏 .2/𝛼2]] ≤ 𝑇 ′ [unroll𝜅 (⟨𝜏1, 𝜏2 [𝜏 .1/𝛼1]⟩)]
• Case Γ ⊢ 𝛼 ≤ Γ(𝛼)
– impossible, since unroll is undefined under an empty substitution □

B.8 Preservation
Lemma B.7 (Inversion of Typing). Let Γ ⊢ 𝑒 : 𝜏 .
(1) If 𝑒 = roll𝜏 ′ 𝑣 , then 𝜏 ′ = 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3] and Γ ⊢ 𝜏 ′ : Ω and Γ ⊢ 𝑣 : unrollΩ (𝜏 ′) and

Γ ⊢ 𝜏 ′ ≤ 𝜏 .

(2) If 𝑒 = unroll 𝑒′, then Γ ⊢ 𝑒′ : 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3] and Γ ⊢ unrollΩ (𝑇 [𝜇𝛼≤𝜏1.𝜏2]) ≤ 𝜏 .

Proof. By induction on the derivation. □

Theorem B.8 (Preservation). If Γ ⊢ 𝑒 : 𝜏 and 𝑒 ↩→ 𝑒′, then Γ ⊢ 𝑒′ : 𝜏 .
Proof. By induction on the derivation of ↩→.

• Case unroll (roll𝜏 ′ 𝑣) ↩→ 𝑣

– by Inversion of Typing,

Γ ⊢ roll𝜏 ′ 𝑣 : 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3] and Γ ⊢ unrollΩ (𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3]) ≤ 𝜏

– by Regularity, Γ ⊢ 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3] : Ω
– by Inversion of Typing, 𝜏 ′ = 𝑇 ′ [𝜇⟨𝛼1≤𝜏 ′1, 𝛼2≤𝜏 ′2⟩.𝜏 ′3] and Γ ⊢ 𝑣 : unrollΩ (𝜏 ′) and Γ ⊢ 𝜏 ′ : Ω
and Γ ⊢ 𝜏 ′ ≤ 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3]

– by Properties of Unrolling, Γ ⊢ unrollΩ (𝜏 ′) ≤ unrollΩ (𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3])
– by transitivity rule for subtyping, Γ ⊢ unrollΩ (𝜏 ′) ≤ 𝜏

– by subsumption rule, Γ ⊢ 𝑣 : 𝜏 □

B.9 Progress
Lemma B.9 (Canonical Subtypes). Let · ⊢ 𝜏 ≤ 𝜏 ′ : 𝜅.

(1)–(3) As before.

(4) If 𝜏 ′ ≡ 𝑇 ′ [𝜇⟨𝛼1≤𝜏 ′1, 𝛼2≤𝜏 ′2⟩.𝜏 ′3], then 𝜏 ≡ 𝑇 [𝜇⟨𝛼1≤𝜏 ′1, 𝛼2≤𝜏 ′2⟩.𝜏 ′3] such that either 𝜏 ≡ 𝜏 ′ or
⊢ 𝑇 [𝜏1] ≤ 𝑇 ′ [𝜇⟨𝛼1≤𝜏 ′1, 𝛼2≤𝜏 ′2⟩.𝜏 ′3].

(5)–(6) As before.

Proof. As before. □

Lemma B.10 (Canonical Values). Let · ⊢ 𝑣 : 𝜏 .

(1)–(3) As before.

(4) If · ⊢ 𝜏 ≤ 𝑇 [𝜇⟨𝛼1≤𝜏1, 𝛼2≤𝜏2⟩.𝜏3], then 𝑣 = roll𝜏 ′ 𝑣 ′.

Proof. As before. □

Theorem B.11 (Progress). If · ⊢ 𝑒 : 𝜏 and 𝑒 ≠ 𝑣 for any 𝑣 , then 𝑒 ↩→ 𝑒′ for some 𝑒′.

Proof. By induction on the derivation. The difference to the proof for the basic calculus is purely

syntactic, given the updated Canonical Values lemma. □
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Syntax
(types) 𝑇 ::= X | 𝑁
(nominal types) 𝑁 ::= C⟨𝑇 ⟩
(classes) 𝐶 ::= class C⟨X<:𝑁 ⟩<:𝑁 {𝑇 x; . . .}
(programs) 𝑃 ::= 𝐶

(contexts) Δ ::= 𝑃 ; X≤𝑁

Type Well-formedness (Δ ⊢fgj 𝑇 ok)

X<:𝑁 ∈ Δ

Δ ⊢fgj X ok Δ ⊢fgj Object ok

class C⟨X<:𝑁 ⟩<:𝑁 ′ { . . . } ∈ Δ Δ ⊢fgj 𝑇 ok Δ ⊢fgj 𝑇 ≤ 𝑁 ′ [𝑇 /X]
Δ ⊢fgj C⟨𝑇 ⟩ ok

Subtyping (Δ ⊢fgj 𝑇 ≤ 𝑇 )

Δ ⊢fgj 𝑇 ≤ 𝑇

Δ ⊢fgj 𝑇 ≤ 𝑇 ′ Δ ⊢fgj 𝑇 ′ ≤ 𝑇 ′′

Δ ⊢fgj 𝑇 ≤ 𝑇 ′′
X<:𝑁 ∈ Δ

Δ ⊢fgj X ≤ 𝑁

class C⟨X<:𝑁 ⟩<:𝑁 ′ { . . . } ∈ Δ

Δ ⊢fgj C⟨𝑇 ⟩ ≤ 𝑁 ′ [𝑇 /X]

Context Well-formedness (Δ ⊢fgj ok)

𝑃 ;𝜖 ⊢fgj ok
Δ ⊢fgj ok Δ ⊢fgj 𝑁 ok

Δ, X<:𝑁 ⊢fgj ok

ProgramWell-formedness (𝑃 ⊢fgj 𝑃 ′
ok)

𝑃 ⊢fgj 𝜖 ok

𝑃 ;𝐶, 𝑃 ′ ⊢fgj 𝐶 ok 𝑃,𝐶 ⊢fgj 𝑃 ′
ok

𝑃 ⊢fgj 𝐶, 𝑃 ′
ok

Class Well-formedness (𝑃 ;𝑃 ′ ⊢fgj 𝐶 ok)

Δ = 𝑃 ; X<:𝑁 Δ ⊢fgj ok Δ ⊢fgj 𝑁 ′
ok Δ′ = 𝑃, 𝑃 ′

; X<:𝑁 Δ′ ⊢fgj 𝑇 ok . . .

𝑃 ;𝑃 ′ ⊢fgj class C⟨X<:𝑁 ⟩<:𝑁 ′ {𝑇 x; . . . } ok

Fig. 5. FGJ syntax, type well-formedness, and subtyping

C ENCODING FGJ
C.1 Defining FGJ

We consider a fragment of FGJ [Igarashi et al. 2001] without F-bounded quantification, since we

omitted F-bounded quantification from the presentation in this paper. Figure 5 gives the definition

and semantics of types and classes for this fragment, omitting method definitions. The main change

relative to Igarashi et al. is that we do not allow a class or generic variable to appear in their

own bounds. Furthermore, our rules make the program explicit as part of the context. And they

formulate the constraint that inheritance must not be cyclic explicitly as well, by linearising the

well-formedness for the classes appearing in it. To that end, the rules assume that all classes

appear ordered topologically with respect to their subtyping hierarchy (which could be achieved by

straightforward preprocessing). They then distinguish the “left” part 𝑃 of the program, containing

the classes before the current and therefor allowed in bounds or superclasses, and the “right” part

𝑃 ′
, which contains the classes after (and the class itself). The latter may still be referenced from the

current class definition, but merely in its body, not its head.

We define Δ′ ⊇ Δ to mean that Δ′ = Δ, X<:𝑁 , i.e., they record the same program, but Δ′
may

bind additional type variables.

We will need the following lemmas asserting properties of the FGJ type system.

Lemma C.1 (FGJ Substitution). Let Δ ⊢fgj 𝑇 ok.

(1) If Δ ⊢fgj 𝑇 ′
ok, then Δ ⊢fgj 𝑇 ′ [𝑇 /X] ok

(2) If Δ ⊢fgj 𝑇1 ≤ 𝑇2, then Δ ⊢fgj 𝑇1 [𝑇 /X] ≤ 𝑇2 [𝑇 /X].
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Proof. By simultaneous induction on the derivation. □

Lemma C.2 (FGJ Supertype Validity). If Δ ⊢fgj 𝑇1 ≤ 𝑇2 and Δ ⊢fgj ok and Δ ⊢fgj 𝑇1 ok, then
Δ ⊢fgj 𝑇2 ok.
Proof. By induction on the subtyping derivation and the well-formedness of Δ. □

Lemma C.3 (FGJ Program Well-formedness Inversion). If 𝑃 ⊢fgj 𝑃 ′
ok and 𝐶 ∈ 𝑃 ′

, then there

exists a subderivation 𝑃, 𝑃 ′
1
; 𝑃 ′

2
⊢fgj 𝐶 ok with 𝑃 ′

1
, 𝑃 ′

2
= 𝑃 ′

.

Proof. By induction on the derivation. □

C.2 Higher-arity Tuples
To encode FGJ programs with more than two classes, we need the 𝑛-ary version of the 𝜇-operator

at this point. Spelling out the its well-formedness rule it looks like this:

Γ′ = Γ, 𝛼≤𝜏 Γ′ ⊢ ⟨𝛼⟩ : ×(𝜅) Γ′ ⊢ 𝜏 ′ : ×(𝜅) Γ′ ⊢ 𝜏 ′ ≤ unroll
[𝜏 ′ .𝑖/𝛼𝑖 ]
×(𝜅 ) (⟨𝜏⟩)

Γ ⊢ 𝜇⟨𝛼≤𝜏⟩.𝜏 ′ : ×(𝜅)
This is assuming an encoding of 𝑛-ary type tuples ⟨𝜏⟩ into nested type pairs as follows. We likewise

use an encoding for 𝑛-ary tuple types {𝜏}:
×() := Ω

×(𝜅, 𝜅) := 𝜅 × (×(𝜅))
⟨⟩ := ⊤

⟨𝜏, 𝜏⟩ := ⟨𝜏, ⟨𝜏⟩⟩
𝜏 .1 := 𝜏 .1

𝜏 .(𝑛+1) := 𝜏 .2.𝑛

{} := ⊤
{𝜏, 𝜏} := 𝜏 × {𝜏}

(We are omitting the term-level encodings, since we are only interested in the type level.) The

following typing rules are then derivable:

Lemma C.4 (Tuple Typing).

(1) If Γ ⊢ 𝜏 : 𝜅, then Γ ⊢ ⟨𝜏⟩ : ×(𝜅).
(2) If Γ ⊢ 𝜏 : ×(𝜅) and 𝑖 ≤ |𝜅 |, then Γ ⊢ 𝜏 .𝑖 : 𝜅𝑖 .
(3) If Γ ⊢ 𝜏 : Ω, then Γ ⊢ {𝜏} : Ω.
(4) If Γ ⊢ {𝜏1, 𝜏2} : Ω, then Γ ⊢ {𝜏1, 𝜏2} ≤ {𝜏1}.
Proof. Each by induction on the length of 𝜏 . □

Likewise, corresponding inversion principles:

Lemma C.5 (Tuple Typing Inversoin).

(1) If Γ ⊢ ⟨𝜏⟩ : ×(𝜅), then Γ ⊢ 𝜏 : 𝜅.

(2) If Γ ⊢ {𝜏} : Ω, then Γ ⊢ 𝜏 : Ω.

Proof. Each by induction on the length of 𝜏 . □

C.3 Translating FGJ
Figure 6 defines the translation of FGJ class definitions into 𝜆misu types that represent their instances.

First off, this translation commutes with substitution:

Lemma C.6 (FGJ Translation Substitution).

(1) ⟦𝑇 ′ [𝑇 /X]⟧ = ⟦𝑇 ′
⟧[⟦𝑇⟧/𝛼X]

(2) ⟦𝐶 [𝑇 /X]⟧ = ⟦𝐶⟧[⟦𝑇⟧/𝛼X]
(3) ⟦𝑁 [𝑇 /X]⟧∗

𝑃
= ⟦𝑁⟧

∗
𝑃
[⟦𝑇⟧/𝛼X]

(4) ⟦𝐶 [𝑇 /X]⟧∗
𝑃
= ⟦𝐶⟧∗

𝑃
[⟦𝑇⟧/𝛼X]

Proof. By simultaneous induction on the structure of the type. Part (4) is a trivial consequence

of the fact that classes cannot contain free type variables. □
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Contexts (⟦Δ⟧) ⟦𝐶 ; X<:𝑁⟧ = 𝛼C≤⟦𝐶⟧, 𝛼X≤⊤

Types (⟦𝑇⟧) ⟦X⟧ = 𝛼X

⟦Object⟧ = {}
⟦C⟨𝑇 ⟩⟧ = 𝛼C ⟦𝑇⟧

Classes (⟦𝐶⟧) ⟦class C⟨X<:𝑁 ⟩<:𝑁 ′ {𝑇 x}⟧ = 𝜆𝛼X:Ω.⟦𝑁
′
⟧

Type Representation (⟦𝑁⟧

∗
𝑃
) ⟦Object⟧∗

𝑃
= {}

⟦C⟨𝑇 ⟩⟧∗
𝑃

= ⟦𝑃 (C)⟧∗
𝑃
⟦𝑇⟧

Class Representation (⟦𝐶⟧∗
𝑃
) ⟦class C⟨X<:𝑁 ⟩<:𝑁 ′ {𝑇 x}⟧∗

𝑃
= 𝜆𝛼X:Ω.{𝜏, ⟦𝑇⟧} iff ⟦𝑁 ′

⟧

∗
𝑃
≡ {𝜏 }

Programs (⟦𝑃⟧) ⟦𝑃⟧ = 𝜇⟨𝛼C≤⟦𝐶⟧⟩.⟨⟦𝐶⟧∗𝑃 ⟩ iff 𝑃 = 𝐶

Fig. 6. FGJ type translation

Furthermore, a simple weakening principle applies to the translation of representations:

With that, we can first show that the translation preserves well-formedness of types and contexts:

Theorem C.7 (FGJ Type Translation). Let Δ ⊇ 𝑃, 𝑃 ′
; 𝜖 and 𝜖 ⊢fgj 𝑃, 𝑃 ′

ok and Δ ⊢fgj ok.
(1) If 𝑃 ⊢fgj 𝑃 ′

ok and ⊢ ⟦𝑃 ; 𝜖⟧ ok, then ⊢ ⟦𝑃, 𝑃 ′
; 𝜖⟧ ok.

(2) If Δ ⊢fgj ok, then ⊢ ⟦Δ⟧ ok.

(3) If Δ ⊢fgj 𝑇 ok, then ⟦Δ⟧ ⊢ ⟦𝑇⟧ : Ω.
(4) If Δ ⊢fgj 𝑁 ok, then ⟦Δ⟧ ⊢ ⟦𝑁⟧

∗
𝑃
: Ω with ⟦𝑁 ′

⟧

∗
𝑃
≡ {𝜏}.

(5) If 𝑃 ; 𝑃 ′ ⊢fgj 𝐶 ok, then ⟦𝑃 ; 𝜖⟧ ⊢ ⟦𝐶⟧ : Ω → Ω with |Ω | = arity(𝐶).
(6) If 𝑃 ; 𝑃 ′ ⊢fgj 𝐶 ok, then ⟦𝑃, 𝑃 ′

; 𝜖⟧ ⊢ ⟦𝐶⟧∗
𝑃
: Ω → Ω with |Ω | = arity(𝐶).

Proof. By simultaneous induction on the combined length of the derivations.

(1) By induction on the derivation of 𝑃 ⊢fgj 𝑃 ′
ok

• subcase 𝑃 ′ = 𝜖

– by definition, ⟦𝑃, 𝑃 ′
; 𝜖⟧ = ⟦𝑃 ; 𝜖⟧

– by assumption, ⊢ ⟦𝑃 ; 𝜖⟧ ok

• subcase 𝑃 ′ = 𝐶, 𝑃 ′′

– by definition, ⟦𝑃, 𝑃 ′
; 𝜖⟧ = ⟦𝑃 ; 𝜖⟧, 𝛼C≤⟦𝐶⟧, ⟦𝑃 ′

; 𝜖⟧

– by inversion, 𝑃 ;𝐶, 𝑃 ′′ ⊢fgj 𝐶 ok and 𝑃,𝐶 ⊢fgj 𝑃 ′′
ok

– by induction (5), ⟦𝑃 ; 𝜖⟧ ⊢ ⟦𝐶⟧ : Ω → Ω
– by context formation, ⊢ ⟦𝑃 ; 𝜖⟧, 𝛼C≤⟦𝐶⟧ ok

– by definition, ⟦𝑃 ; 𝜖⟧, 𝛼C≤⟦𝐶⟧ = ⟦𝑃,𝐶; 𝜖⟧

– by induction, ⊢ ⟦𝑃,𝐶, 𝑃 ′′
; 𝜖⟧ ok

(2) By induction on the derivation of Δ ⊢fgj ok
• Case Δ = 𝑃, 𝑃 ′

; 𝜖

– by definition, ⟦𝜖 ; 𝜖⟧ = ·
– by context formation, ⊢ · ok
– by induction (1), ⊢ ⟦𝑃, 𝑃 ′

; 𝜖⟧ ok

• Case Δ = Δ′, X<:𝑁
– by definition, ⟦Δ′, X<:𝑁⟧ = ⟦Δ′

⟧, 𝛼X≤⊤
– by inversion, Δ′ ⊢fgj ok
– by induction (2), ⊢ ⟦Δ′

⟧ ok

– by kinding rule for top, ⟦Δ′
⟧ ⊢ ⊤ ok

– by context wf rule, ⊢ ⟦Δ′
⟧, 𝛼X≤⊤ ok

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 234. Publication date: October 2023.



Mutually Iso-recursive Subtyping (Expanded) 234:55

(3) By induction on the derivation of Δ ⊢fgj 𝑇 ok

• Case 𝑇 = X
– by inversion, X<:𝑁 ∈ Δ
– by definition, ⟦X⟧ = 𝛼X
– by definition, ⟦Δ⟧(𝛼X) = ⊤
– by kinding rule for top, ⟦Δ⟧ ⊢ ⊤ : Ω
– by kinding rule for type variables, ⟦Δ⟧ ⊢ 𝛼X : Ω

• Case 𝑇 = Object
– by definition, ⟦Object⟧ = {}
– by Tuple Typing, ⟦Δ⟧ ⊢ {} : Ω

• Case 𝑇 = C⟨𝑇 ⟩
– by inversion, 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{. . . } ∈ Δ and Δ ⊢fgj 𝑇 ok and |𝑇 | = |X|
– by definition, ⟦C⟨𝑇 ⟩⟧ = 𝛼C ⟦𝑇⟧

– by induction (3), ⟦Δ⟧ ⊢ ⟦𝑇⟧ : Ω
– by induction (5), ⟦𝑃 ; 𝜖⟧ ⊢ ⟦𝐶⟧ : Ω → Ω with |Ω | = |X|
– by Weakening, ⟦Δ⟧ ⊢ ⟦𝐶⟧ : Ω → Ω
– by definition, ⟦Δ⟧(𝛼C) = ⟦𝐶⟧

– by kinding rule for type variables, ⟦Δ⟧ ⊢ 𝛼C : Ω → Ω

– by iterating kinding rule for application, ⟦Δ⟧ ⊢ 𝛼C ⟦𝑇⟧ : Ω
(4) By induction on the derivation of Δ ⊢fgj 𝑁 ok

• Case 𝑁 = Object
– by definition, ⟦Object⟧∗

𝑃
= {}

– by Tuple Typing, ⟦Δ⟧ ⊢ {} : Ω
• Case 𝑁 = C⟨𝑇 ⟩
– by inversion, 𝐶 = class C⟨X<:𝑁 ′⟩<:𝑁 ′′{. . . } ∈ Δ and Δ ⊢fgj 𝑇 ok and |𝑇 = |X|
– by definition, ⟦C⟨𝑇 ⟩⟧∗

𝑃
= ⟦𝐶⟧∗

𝑃
⟦𝑇⟧

– by induction (3), ⟦Δ⟧ ⊢ ⟦𝑇⟧ : Ω
– by FGJ Program WF Inversion, 𝑃1; 𝑃2 ⊢fgj 𝐶 ok for some 𝑃1, 𝑃2 = 𝑃, 𝑃 ′

– by induction (6), ⟦𝑃, 𝑃 ′
; 𝜖⟧ ⊢ ⟦𝐶⟧∗

𝑃
: Ω → Ω with |Ω | = |X| and ⟦𝐶⟧∗

𝑃
≡ 𝜆𝛼 :Ω.{𝜏}

– by Weakening, ⟦Δ⟧ ⊢ ⟦𝐶⟧∗
𝑃
: Ω → Ω

– by iterating kinding rule for application, ⟦Δ⟧ ⊢ ⟦𝐶⟧∗
𝑃
⟦𝑇⟧ : Ω

– by reduction, ⟦𝐶⟧∗
𝑃
⟦𝑇⟧ ≡ {𝜏}[⟦𝑇⟧/𝛼]

(5) By induction on the derivation of Δ ⊢fgj 𝐶 ok

• by inversion 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{. . . }
• let Δ = 𝑃 ; X<:𝑁
• by inversion, Δ ⊢fgj ok and Δ ⊢fgj 𝑁 ′

ok

• by definition, ⟦𝐶⟧ = 𝜆𝛼X:Ω.⟦𝑁
′
⟧

• by induction (2), ⊢ ⟦Δ⟧ ok

• by induction (3), ⟦Δ⟧ ⊢ ⟦𝑁 ′
⟧ : Ω

• by definition, ⟦Δ⟧ = ⟦𝑃 ; 𝜖⟧, 𝛼X≤⊤
• by iterating kinding rule for lambdas, ⟦Δ⟧ ⊢ 𝜆𝛼X:Ω.⟦𝑁 ′

⟧ : Ω → Ω
(6) By induction on the derivation of Δ ⊢fgj 𝐶 ok

• by inversion, 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{. . . }
• let Δ = 𝑃 ; X<:𝑁 and Δ′ = 𝑃, 𝑃 ′

; X<:𝑁
• by inversion, Δ ⊢fgj ok and Δ ⊢fgj 𝑁 ′

ok and Δ′ ⊢fgj 𝑇 ok
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• by induction (2), ⊢ ⟦Δ⟧ ok and ⊢ ⟦Δ′
⟧ ok

• by induction (3), ⟦Δ′
⟧ ⊢ ⟦𝑇⟧ : Ω

• by induction (4), ⟦Δ⟧ ⊢ ⟦𝑁 ′
⟧

∗
𝑃
: Ω with ⟦𝑁 ′

⟧

∗
𝑃
≡ {𝜏}

• by definition, ⟦𝐶⟧∗
𝑃
= 𝜆𝛼X:Ω.{𝜏, ⟦𝑇⟧}

• by Type Preservation, ⟦Δ⟧ ⊢ {𝜏} : Ω
• by Weakening, ⟦Δ′

⟧ ⊢ {𝜏} : Ω
• by Tuple Typing Inversion, ⟦Δ′

⟧ ⊢ 𝜏 : Ω

• by Tuple Typing, ⟦Δ′
⟧ ⊢ {𝜏, ⟦𝑇⟧} : Ω

• by definition, ⟦Δ′
⟧ = ⟦𝑃, 𝑃 ′

; 𝜖⟧, 𝛼X≤⊤
• by iterating kinding rule for lambda, ⟦𝑃, 𝑃 ′

; 𝜖⟧ ⊢ 𝜆𝛼X:Ω.{𝜏, ⟦𝑇⟧} : Ω → Ω □

Second, we can prove that the translation of classes preserves subtyping:

Theorem C.8 (FGJ Subtype Translation). Let Δ ⊇ 𝑃, 𝑃 ′
; 𝜖 and 𝜖 ⊢fgj 𝑃, 𝑃 ′

ok and Δ ⊢fgj ok.
(1) If Δ ⊢fgj 𝑇1 ≤ 𝑇2 and Δ ⊢fgj 𝑇1 ok, then ⟦Δ⟧ ⊢ ⟦𝑇1⟧ ≤ ⟦𝑇2⟧.

(2) If Δ ⊢fgj 𝑁1 ≤ 𝑁2 and Δ ⊢fgj 𝑁1 ok, then ⟦Δ⟧ ⊢ ⟦𝑁1⟧
∗
𝑃
≤ ⟦𝑁2⟧

∗
𝑃
.

(3) If 𝑃 ; 𝑃 ′ ⊢fgj 𝐶 ok, then ⟦𝑃, 𝑃 ′
; 𝜖⟧ ⊢ ⟦𝐶⟧∗

𝑃
≤ ⟦𝐶⟧.

Proof.

(1) By induction on the derivation of Δ ⊢fgj 𝑇1 ≤ 𝑇2
• Case reflexivity

– by inversion, 𝑇1 = 𝑇2
– by definition, ⟦𝑇1⟧ = ⟦𝑇2⟧

– by reflexivity, ⟦𝑇1⟧ ≡ ⟦𝑇2⟧

– by subtyping rule, ⟦Δ⟧ ⊢ ⟦𝑇1⟧ ≤ ⟦𝑇2⟧

• Case transitivity

– by inversion, Δ ⊢fgj 𝑇1 ≤ 𝑇 ′
and Δ ⊢fgj 𝑇 ′ ≤ 𝑇2

– by induction (1), ⟦Δ⟧ ⊢ ⟦𝑇1⟧ ≤ ⟦𝑇 ′
⟧ and ⟦Δ⟧ ⊢ ⟦𝑇 ′

⟧ ≤ ⟦𝑇2⟧

– by FGJ Supertype Validity, Δ ⊢fgj 𝑇 ′
ok

– by FGJ Type Translation (3), ⟦Δ⟧ ⊢ ⟦𝑇 ′
⟧ : Ω

– by subtyping rule, ⟦Δ⟧ ⊢ ⟦𝑇1⟧ ≤ ⟦𝑇2⟧

• Case X ≤ Δ(X)
– by inversion, 𝑇1 = X and 𝑇2 = 𝑁 and X<:𝑁 ∈ Δ
– by definition, ⟦𝑇1⟧ = 𝛼X and ⟦𝑇2⟧ = ⟦𝑁⟧

– by definition, ⟦Δ⟧(𝛼X) = ⟦𝑁⟧

– by subtyping rule for variables, ⟦Δ⟧ ⊢ 𝛼X ≤ ⟦𝑁⟧

• Case C⟨𝑇 ⟩ ≤ 𝑁 ′ [𝑇 /X]
– by inversion, 𝑇1 = C⟨𝑇 ⟩ and 𝑇2 = 𝑁 ′ [𝑇 /X] and 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{. . . } ∈ Δ

– by definition, ⟦𝑇1⟧ = 𝛼C ⟦𝑇⟧ and ⟦𝑇2⟧ = ⟦𝑁 ′ [𝑇 /X]⟧
– by FGJ Translation Substitution (1), ⟦𝑇2⟧ = ⟦𝑁 ′ [𝑇 /X]⟧ = ⟦𝑁 ′

⟧[⟦𝑇⟧/𝛼X]
– by FGJ Program WF Inversion, 𝑃1; 𝑃2 ⊢fgj 𝐶 ok for some 𝑃1, 𝑃2 = 𝑃, 𝑃 ′

– by inversion, 𝑃1; X<:𝑁 ⊢ 𝑁 ′
ok

– by FGJ Type Translation (2), ⟦𝑃1; 𝜖⟧, 𝛼X≤⊤ ⊢ ⟦𝑁 ′
⟧ : Ω

– by Weakening, ⟦Δ⟧, 𝛼X≤⊤ ⊢ ⟦𝑁 ′
⟧ : Ω

– by inversion of Δ ⊢fgj 𝑇1 ok assumption, Δ ⊢ 𝑇 ok

– by FGJ Type Translation (2), ⟦Δ⟧ ⊢ ⟦𝑇⟧ : Ω

– by Substitution, ⟦Δ⟧ ⊢ ⟦𝑁 ′
⟧[⟦𝑇⟧/𝛼X] : Ω

– by definition, ⟦𝐶⟧ = 𝜆𝛼X:Ω.⟦𝑁
′
⟧
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– by beta reduction rule, ⟦𝐶⟧ ⟦𝑇⟧ ≡ ⟦𝑁 ′
⟧[⟦𝑇⟧/𝛼X]

– by definition, ⟦Δ⟧(𝛼C) = ⟦𝐶⟧

– by subtyping rule for variables, ⟦Δ⟧ ⊢ 𝛼C ≤ ⟦𝐶⟧

– by reflexivity, ⟦𝑇⟧ ≡ ⟦𝑇⟧

– by subtyping rule, ⟦Δ⟧ ⊢ ⟦𝑇⟧ ≤ ⟦𝑇⟧

– by subtyping rule for application, ⟦Δ⟧ ⊢ 𝛼C ⟦𝑇⟧ ≤ ⟦𝐶⟧ ⟦𝑇⟧

– by subtyping transitivity, ⟦Δ⟧ ⊢ 𝛼C ⟦𝑇⟧ ≤ ⟦𝑁 ′ [𝑇 /X]⟧
(2) By induction on the derivation of Δ ⊢fgj 𝑁1 ≤ 𝑁2

• Case reflexivity

– by inversion, 𝑁1 = 𝑁2

– by definition, ⟦𝑁1⟧
∗
𝑃
= ⟦𝑁2⟧

∗
𝑃

– by reflexivity, ⟦𝑁1⟧
∗
𝑃
≡ ⟦𝑁2⟧

∗
𝑃

– by subtyping rule, ⟦Δ⟧ ⊢ ⟦𝑁1⟧
∗
𝑃
≤ ⟦𝑁2⟧

∗
𝑃

• Case transitivity

– by inversion, Δ ⊢fgj 𝑁1 ≤ 𝑁 ′
and Δ ⊢fgj 𝑁 ′ ≤ 𝑁2

– by induction (2), ⟦Δ⟧ ⊢ ⟦𝑁1⟧
∗
𝑃
≡ ⟦𝑁 ′

⟧

∗
𝑃
and ⟦Δ⟧ ⊢ ⟦𝑁 ′

⟧

∗
𝑃
≡ ⟦𝑁2⟧

∗
𝑃

– by FGJ Supertype Validity, Δ ⊢fgj 𝑁 ′
ok

– by Type Translation (4), ⟦Δ⟧ ⊢ ⟦𝑁 ′
⟧

∗
𝑃
: Ω

– by subtyping rule, ⟦Δ⟧ ⊢ ⟦𝑁1⟧
∗
𝑃
≡ ⟦𝑁2⟧

∗
𝑃

• Case X ≤ Δ(X)
– impossible

• Case C⟨𝑇 ⟩ ≤ 𝑁 ′ [𝑇 /X]
– by inversion, 𝑁1 = C⟨𝑇 ⟩ and 𝑁2 = 𝑁 ′ [𝑇 /X] and 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{𝑇 ′ x, . . . } ∈ Δ

– by definition, ⟦𝑁1⟧
∗
𝑃
= ⟦𝐶⟧∗

𝑃
⟦𝑇⟧ and ⟦𝑁2⟧

∗
𝑃
= ⟦𝑁 ′ [𝑇 /X]⟧∗

𝑃

– by inversion of Δ ⊢fgj 𝑁1 ok assumption, Δ ⊢ 𝑇 ok

– by FGJ Type Translation (3), ⟦Δ⟧ ⊢ ⟦𝑇⟧ : Ω
– by FGJ Program WF Inversion, 𝑃1; 𝑃2 ⊢fgj 𝐶 ok for some 𝑃1, 𝑃2 = 𝑃, 𝑃 ′

– by inversion, 𝑃1; X<:𝑁 ⊢ 𝑁 ′
ok

– by FGJ Type Translation (4), ⟦𝑃1; 𝜖⟧, 𝛼X≤⊤ ⊢ ⟦𝑁 ′
⟧

∗
𝑃
: Ω with ⟦𝑁 ′

⟧

∗
𝑃
≡ {𝜏}

– by Weakening, ⟦Δ⟧, 𝛼X≤⊤ ⊢ ⟦𝑁 ′
⟧

∗
𝑃
: Ω

– by definition, ⟦𝐶⟧∗
𝑃
= 𝜆𝛼X:Ω.{𝜏, ⟦𝑇 ′

⟧}
– by FGJ Translation Substitution (3), ⟦𝑁2⟧

∗
𝑃
= ⟦𝑁 ′ [𝑇 /X]⟧∗

𝑃
= ⟦𝑁 ′

⟧

∗
𝑃
[⟦𝑇⟧/𝛼X] = {𝜏 [⟦𝑇⟧/𝛼X]}

– by FGJ Type Translation (4), ⟦Δ⟧ ⊢ ⟦𝑁1⟧
∗
𝑃
: Ω

– by Substitution, ⟦Δ⟧ ⊢ ⟦𝑁 ′
⟧

∗
𝑃
[⟦𝑇⟧/𝛼X] : Ω

– by definition, ⟦𝑁 ′
⟧

∗
𝑃
[⟦𝑇⟧/𝛼X] = {𝜏 [⟦𝑇⟧/𝛼X]}

– by beta reduction rule, ⟦𝐶⟧∗
𝑃
⟦𝑇⟧ ≡ {𝜏, ⟦𝑇 ′

⟧}[⟦𝑇⟧/𝛼X] = {𝜏 [⟦𝑇⟧/𝛼X], ⟦𝑇 ′
⟧[⟦𝑇⟧/𝛼X]}

– by Type Preservation, ⟦Δ⟧ ⊢ {𝜏 [⟦𝑇⟧/𝛼X], ⟦𝑇 ′
⟧[⟦𝑇⟧/𝛼X]} : Ω

– by Tuple Typing (3), ⟦Δ⟧ ⊢ {𝜏 [⟦𝑇⟧/𝛼X], ⟦𝑇 ′
⟧[⟦𝑇⟧/𝛼X]} ≤ {𝜏 [⟦𝑇⟧/𝛼X]}

– by subtyping transitivity, ⟦Δ⟧ ⊢ ⟦𝐶⟧∗
𝑃
⟦𝑇⟧ ≤ ⟦𝑁 ′

⟧

∗
𝑃
[𝑇 /X]

(3) By induction on the derivation of 𝑃 ; 𝑃 ′ ⊢fgj 𝐶 ok

• by inversion, 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{𝑇 x}
• let Δ = 𝑃 ;𝑋<:𝑁 and Δ′ = 𝑃, 𝑃 ′

;𝑋<:𝑁

• by inversion, Δ ⊢fgj ok and Δ ⊢fgj 𝑁 ′
ok and Δ′ ⊢fgj 𝑇 ok

• by definition, ⟦𝐶⟧ = 𝜆𝛼X:Ω.⟦𝑁
′
⟧ and ⟦𝐶⟧∗

𝑃
= 𝜆𝛼X:Ω.{𝜏, ⟦𝑇⟧}

• by FGJ Type Translation (4), ⟦𝑁 ′
⟧

∗
𝑃
≡ {𝜏}
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• by symmetry, {𝜏} ≡ ⟦𝑁 ′
⟧

∗
𝑃

• by subtyping reflexivity, ⟦Δ⟧ ⊢ {𝜏} ≤ ⟦𝑁 ′
⟧

∗
𝑃

• by Tuple Typing (3), ⟦Δ⟧ ⊢ {𝜏, ⟦𝑇⟧} ≤ {𝜏}
• by subtyping transitivity, ⟦Δ⟧ ⊢ {𝜏, ⟦𝑇⟧} ≤ ⟦𝑁 ′

⟧

∗
𝑃

• by iterating subtyping rule for lambda, ⟦Δ⟧ ⊢ 𝜆𝛼X:Ω.{𝜏, ⟦𝑇⟧} ≤ 𝜆𝛼X:Ω.⟦𝑁
′
⟧ □

As a last interesting step, we need to relate the translation to unrolling:

Lemma C.9 (FGJ Unrolling Translation).

Let 𝑃 = 𝐶 = class C⟨X<:𝑁 ⟩<:𝑁 ′{. . . }
𝑖

and 𝜅 = Ω |X | → Ω
𝑖

and 𝜎 = [⟨⟦𝐶⟧∗
𝑃
⟩.𝑖/𝛼C

𝑖

].
(1) unroll

𝜎

Ω |X𝑖 |−|𝛼 |→Ω
(⟦𝐶𝑖⟧𝛼) ≡ (𝜆𝛼X𝑖 :Ω.⟦𝑁 ′

𝑖 ⟧
∗
𝑃
) 𝛼 .

(2) unroll
𝜎
𝜅𝑖
(⟦𝐶𝑖⟧) ≡ 𝜆𝛼X𝑖 :Ω.⟦𝑁

′
𝑖 ⟧

∗
𝑃
.

Proof.

(1) By induction on the length of |X𝑖 |, observing in the base case that ⟨⟦𝐶⟧∗
𝑃
⟩.𝑖 ≡ ⟦𝐶𝑖⟧

∗
𝑃
.

(2) Follows directly from (1). □

Finally, from all that it follows that the translation of programs, and hence mutually recursive

classes, is well-formed:

Theorem C.10 (FGJ Program Translation). Let 𝜖 ⊢fgj 𝑃,𝐶 : ok and 𝜅 = Ωarity(𝐶 ) → Ω.

(1) ⟦𝑃,𝐶⟧ ⊢ ⟨𝛼C⟩ : ×(𝜅).
(2) ⟦𝑃,𝐶⟧ ⊢ ⟨⟦𝐶⟧∗

𝑃
⟩ : ×(𝜅).

(3) ⟦𝑃,𝐶⟧ ⊢ ⟨⟦𝐶⟧∗
𝑃
⟩ ≤ unroll

𝜎
×(𝜅 ) (⟨⟦𝐶⟧⟩) where 𝜎 = [⟨⟦𝐶⟧∗

𝑃
⟩.𝑖/𝛼C

𝑖

]

Proof. Each by induction on the length of 𝐶 .

(1) Follows from the definition of ⟦𝑃,𝐶⟧ and the kinding rule for type variables.

(2) Follows from FGJ Type Translation (6).

(3) Follows from FGJ Subtype Translation (4) and FGJ Unrolling Translation and subtyping

transitivity. □

Corollary C.11 (FGJ Translation Correctness). If 𝜖 ⊢fgj 𝑃 ok, then · ⊢ ⟦𝑃⟧ : 𝜅.

Proof. By FGJ Program Translation with empty 𝑃 and the typing rule for 𝑛-ary 𝜇-types. □
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